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Abstract

How do elite universities balance diversity and academics during admissions, and do they

face a trade-off in doing so? We develop a theory-based empirical framework to identify and

quantify this potential trade-off ex-post, using post-entry outcomes. We apply our framework

to admission and exam-performance data from Cambridge University. Comparing directly ad-

mitted students and second-round admits from different demographic groups yields bounds on

the magnitude of trade-off, which (A) hold irrespective of whether we observe all applicant

characteristics, and (B) require no information on rejected applicants. We find robust evidence

of a trade-off between gender balance and performance in math-intensive subjects. It implies

a weight of at least 20% on gender-diversity and at most 80% on academics in the university

objective. Such trade-offs are not identified for state vis-a-vis privately-funded school students,

nor for gender in equally competitive non-mathematical disciplines.

Keywords: University Admission, Affirmative action, Diversity-performance trade-off, Ex-

post Evaluation, Marginal Admits, Waitlist Admission
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1 Introduction

From political appointments to workplace recruitment and promotions, the question of diversity

is receiving increasing attention around the world. An important case is demographic and so-
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cioeconomic diversity in admission to elite colleges, given its potential to reduce intra- and inter

generational economic inequality. For example, in the UK, a widely publicized Sutton Trust report

in 2018 revealed that Oxford and Cambridge have, in recent years, recruited more students from

eight specific schools than almost 3,000 other UK state schools put together. The majority of these

eight schools are expensive private institutions. In the United States, many high-profile lawsuits

have been contested on the issue of fair admissions cf. Regents of the University of California versus

Bakke 1978 and Students for Fair Admissions, Inc. versus President and Fellows of Harvard Col-

lege 2014, culminating in the US Supreme Court’s 2023 decision to outlaw race-based affirmative

action. At the same time, maintaining academic excellence remains a priority for such institutions.

For example, the official admission statement at Oxford claims that it “seeks to admit students of

the highest academic merit and potential.” Similarly, Cambridge claims to “... offer admission to

students of the highest intellectual potential, irrespective of social, racial, religious and financial

considerations.”1

Despite much heated exchanges in the news media and widespread public interest in the issue,

rigorous statistical evaluations of existing admission practices are rare in the academic literature.

In the present paper, we build an analytical framework to assess admissions ex-post by utilizing

data on a post-entry outcome. In contrast to the extensive literature in economics on detecting

discrimination via outcome-based tests, we ask: what objective function of the decisionmaker would

rationalize the data that we observe? Our framework for answering this question consists of two

elements. The first is a stylized theoretical model of diversity-performance balance in admissions,

which quantifies the trade-off between the two in terms of the inter-group difference in outcomes

of marginal entrants, i.e. the implicit ‘cutoffs’ for entry.

Because admissions are typically based on many indicators, some of which, like confidential

reference letters, are typically unavailable to researchers, the marginal entrants are impossible

to identify directly. So, the second element of our analysis is to then show that one can use

the outcome of students from historically over-represented groups (males, privately educated etc.)

entering the university from waitlists, i.e. second-round clearing, with those from under-represented

groups (females, state-educated) entering directly, to bound our key parameter of interest, viz. the

diversity-performance trade-off. Using waitlists for admissions is common in many, if not most,

institutions. As such, our method suggests an approach that is applicable in such settings, including

Cambridge from where our data come, and where the second round is known as the ‘pool’.2

In other words, instead of presenting solely a set of reduced-form, descriptive statistics, we

1https://www.undergraduate.study.cam.ac.uk/applying/decisions/admissions-policy

https://www.materials.ox.ac.uk/admissions/undergraduate/admissions-criteria.html
2If data are available on the ranking of individual applicants, e.g. when admission is based on a single admission-

test score, then it becomes possible to directly identify marginal candidates, as in Bertrand et al. 2010 and Albaek

2017. But such cases are generally less common.
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provide a measure of a latent structural object that has the economic interpretation of a revealed

preference parameter. This parameter can be interpreted either as an implicit weight on demo-

graphics vis-a-vis (correctly) expected future outcome, or equivalently as a measure of systematic

deviation from correct prediction of group-specific future outcomes; based on additional data and

institutional background, we make the case for the former as the more likely interpretation of our

empirical results. We stress here that our theoretical model has an ‘as if’ character; a university is

not assumed to solve exactly the optimization exercise we analyze. That is, we ask “if one analyzes

the admission and ex-post outcome data as if they were generated through a trade-off exercise, then

what are the implied weights on demographics vis-a-vis a future outcome of interest that would

rationalize the data?”

For the empirical analysis in this paper, the specific outcome we focus on is the end-of-year

exam results in the university. Although this may not capture wider implications for society of

admitting students from specific backgrounds, it is a natural metric of performance to use as it is

the institution’s own assessment of students’ academic outcomes, and hence most closely captures

the university’s stated objective at admissions (recall the admission statements of Oxford and

Cambridge quoted above). Moreover, there is little doubt that exam results affect students’ future

opportunities, with employers and post-graduate programs basing their selection on them.

Note, however, that our method can be applied to any other post-entry outcome of interest, e.g.

post-college earnings, indices of well-being during and after college, gain in academic ability from

attending college, future alumni donations, etc. provided such data are available for all admitted

students. This method could also potentially be applied to value-added measures of university

education, as in Bleemer 2021, 2022 and Black et al. 2023, if one could simulate the counterfactual

outcome for the admitted students, had they enrolled elsewhere. In the Cambridge context, to the

best of our knowledge, exam results is the only outcome on which the University systematically

collects data and which it uses in its own evaluations of its admission policy, and hence the empirical

section of the paper focuses on those, with the understanding that our empirical conclusions could

be different if a different outcome variable were used.

When applying the above methodology to the Cambridge data, our focus is on two key ap-

plicant characteristics: gender and socioeconomic background. We reach the following empirical

conclusions: for gender, a diversity-performance trade-off exists in the mathematically intensive

subjects, viz. Physical Sciences, Engineering, Economics and Mathematics, where the waitlisted

males outperforms directly admitted females by at least 0.25 of a standard deviation in university

exams. These estimates, in turn, imply that the relative weight on gender diversity in these subjects

is at least 20 percent and that on academic performance at most 80 percent. Interestingly however,

we find no such trade-off either for gender in other highly competitive but non-mathematical sub-

jects, viz. Law, Biology and Medicine, nor for socioeconomic status as captured by type of school

attended by the student. These findings show that the existence of a trade-off is context-dependent;
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furthermore, they stand somewhat in contrast to both the long-standing public perception of Oxford

and Cambridge as being socially elitist and the universities’ own statements that their admissions

are based solely on ‘academic profile and potential’ (cf. Cummings 2015).

One important and challenging question which emerges from our empirical results is why there

is a trade-off with performance when it comes to gender diversity in mathematical subjects. We

present several pieces of evidence that provide further insight into this.

Short Literature Review: Methodologically, this paper relates to the literature studying

disparities in treatment of different groups, specifically to the branch that uses outcome tests

inspired by Becker 1957, 1971.

The traditional approach in economics to study disparity of treatment has focussed on detecting

discrimination (cf. Becker 1957, Arrow 1973, Heckman 1998). Canay et al. 2022 provide an

overview of this literature, and give a formal exposition of the outcome test approach through the

Roy model, highlighting important assumptions and challenges. Whilst there exists a large body

of empirical research pertaining to discrimination on the basis of race and gender in the labour

market (cf. Altonji and Blank 1999), law enforcement (cf. Knowles et al. 2001), credit supply (cf.

Ladd 1998) and legal rulings (cf. Hull 2021); the empirical evaluation of elite university admissions

is less common in comparison.3

There is a moderately sized literature in both economics and sociology on the consequences of

positive discrimination, e.g. race-based affirmative action in US colleges. Fryer and Loury 2015

provide an overview of the broader questions surrounding the nature and impact of affirmative

action. Arcidiacono et al. 2015 and Arcidiacono and Lovenheim 2016 summarize existing empirical

work in economics on affirmative action in (mostly US) college admissions with a focus on race.

The empirical evidence on the presence and consequences of affirmative action in college admissions

is mixed. In the educational sociology literature, Boliver and coauthors, in a series of papers (cf.

Boliver, 2013), have analyzed ethnicity-based inequality in UK college admissions using descriptive

methods and found significant differences in admission rates by ethnic background, after control-

ling for observable characteristics of applicants. Bhattacharya et al. 2017 tested meritocracy of

admissions at a different UK university using an assumption about the relationship between ob-

servables and unobservables, and concluded ex ante, i.e. based on pre-admission characteristics

but not post-enrolment outcomes, that male applicants were being held to higher academic stan-

dards at admission. In contrast, the present paper models the preference for diversity explicitly

in the objective function, does not make assumptions about unobservables as in the earlier paper,

and instead uses post-enrolment academic performance to conduct an outcomes test. As such, the

method outlined in the present paper can be used if a different, nonacademic outcome is the object

of interest, e.g. future earnings or alumni donation. In this case, the key assumptions of the earlier

3Among others, papers using outcome tests to study racial discrimination in law enforcement also include Ayres

2002, Anwar and Fang 2006, Alesina and La Ferrara 2014.
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paper are unlikely to hold.

As for ex-post analysis, Sander 2004 investigated race-based affirmative action in US law school

admissions and concluded that it hurt the production of black lawyers, and Ayres and Brooks

2004 provided evidence to the contrary. Keith et al. 1985 concluded that affirmative action in

medical school admissions led to ‘substantial integration of the medical marketplace’. On the other

hand, Arcidiacono et al. 2016 found that race-based undergraduate admissions at the University

of California led to lower graduation rates in STEM fields than if the beneficiaries had attended

lower ranked schools, while Bleemer 2022 reported that the end of affirmative action led to worse

graduation rates and lower mid-career earnings of under-represented minorities. Results similar

to Bleemer were found for the US state of Texas by Black et al. 2023, whilst Bleemer 2021 also

found that studying at California’s selective universities increases educational attainment and early

career earnings of high achieving students from underrepresented backgrounds by the same amount

or more than for their better-prepared peers.

Fu 2014 discussed a structural model of admissions which included modelling competition be-

tween colleges. In Fu’s formulation, the universities’ preference for higher tuition revenue is analo-

gous to the preference for diversity in our case. However, Fu’s approach to modelling and identifi-

cation is fully parametric. In our paper, the (set-) identification is fully nonparametric in the sense

that no distributional or functional form assumption are made on unobservables and utilities.

Very recently, Arcidiacono et al 2023 have documented significantly higher admission chances

for minorities with comparable test-scores as non-minorities at two highly selective US universities,

while Chetty et al 2023 report that applicants from high income families are significantly more

likely to attend elite institutions.

Our study is also substantively related to Autor and Scarborough 2008, who demonstrate that

firms can improve diversity without sacrificing productivity by changing their selection procedures,

and Kleinberg et al 2018a and Kleinberg et al. 2018b who build the case for using algorithms to

improve selection in public organizations, with applications to judicial bail decisions and university

admissions. In addition, Kleinberg et al 2017 show that, in such decisions, it is impossible to avoid

all forms of disparate impact, so a policy that corrects for one form of discrimination would introduce

another. Our analysis illustrates this: in section 3.1.1, we show graphically that, theoretically, it

is generally impossible to maintain both equal success rates across genders (or equal gender shares

among admitted) and equal thresholds at admissions. Then subsequently, we show empirically that

the university has managed to equalize success rates across genders in the STEM fields, but not

the admission thresholds.

The rest of the paper is organized as follows: In Section 2, we describe the context and admission

process at the University of Cambridge. In Section 3, we first offer a simple theoretical model

of decisions by a university which values both performance and diversity. We then develop our

econometric approach, using the two-tier nature of admissions. In Section 4, we describe our
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data. In Section 5, we show the results obtained by applying our methods to the Cambridge data,

focussing on gender. In Section 6, we present the results on socioeconomic background. Section

7 summarizes and concludes. The Appendix presents additional results and further robustness

checks.

2 Empirical context

This section describes our empirical setting, that of the University of Cambridge. We first provide

some discussion on the dual objectives of performance and diversity faced by the University, then

how performance is assessed, and finally the details of how students are admitted. These inform

our theoretical model and empirical identification, as presented in Section 3.

All undergraduate students and most academics in Cambridge belong to one of its 29 colleges4.

Colleges, in addition to providing accommodation and meals, fulfil two crucial functions. First,

they deliver nearly all small group teaching to undergraduates, so called supervisions. Second, they

make undergraduate admission decisions on behalf of the University (more on this is in section 2.3).

2.1 University objectives and diversity concerns

The University of Cambridge is one of the oldest and most prestigious higher education institu-

tions in the world. Every year, around 20,000 students apply for 3,500 places in Cambridge’s

undergraduate programme, making it among the most selective, internationally.

The objectives of the University’s admissions are articulated in its Admissions Policy (University

of Cambridge, 2023):

The principal aim of the Admissions Policy of the Colleges of the University of Cam-

bridge is to offer admission to students of the highest intellectual potential, irrespective

of social, racial, religious and financial considerations.

Two further aims are:

• aspiration – to encourage applications from groups that are, at present, under-represented in

Cambridge,

• fairness – to ensure that each applicant is individually assessed, without partiality or bias, in

accordance with the policy on Equal Opportunities, and to ensure that, as far as possible, an

applicant’s chance of admission to Cambridge does not depend on choice of College.

Based on this, we make three observations. First, when we model the University’s admissions,

‘offering admission to students of the highest intellectual potential’ should form the main part of

4There are 31 colleges in Cambridge, but two only admit postgraduate students.
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the objective function. Second, in ‘further aims’ the University’s raises concerns about under-

represented groups, and so we want to also allow for this when modelling its objective. Indeed,

the statement talks about ‘encouraging applications’ from under-represented groups. In our model,

we allow for the possibility that the university might care directly about the number of students

it admits from such groups; we then let the data tell us whether this is the part of the objective

function or not. This also reflects the fact that diversity in higher education is a key concern at

most leading universities around the world, and not just at Cambridge. Third, other than fair

treatment of applicants, there are no further aims articulated in the University’s statement. This

is important, since our identification is based on the assumption that the university is not pursuing

goals other than those included in the model’s objective function, as is also discussed in Canay et

al. 2022.

2.1.1 Diversity concerns

We focus on two student characteristics which are the key focus of diversity concerns, both world-

wide and specifically for the UK, viz. gender and socioeconomic background.

Gender: Although the overall enrolment of girls often equals or exceeds that of boys, women’s

participation in STEM disciplines has been an area of concern around the world. As we show

later, this is also a concern at Cambridge, where women are significantly underrepresented in these

subjects (see Section 4).

Socioeconomic background: Most universities around the world are concerned about ex-

panding participation from less advantaged socioeconomic groups. This is of particular concern in

the UK, where universities including Cambridge, are primarily funded by tax revenues. One of the

key measures used by the UK government to assess the socioeconomic background of students is

the type of school attended prior to university. For this purpose, all UK schools are divided into

two groups: state-funded schools that are free to attend, and independent, fee-charging schools,

which we will refer to as privately-funded.5 The latter typically enrol children from households of

higher socioeconomic status, and these children tend to be over-represented at the top UK Univer-

sities relative to their proportion in the population. One of the key widening participation targets

that the UK government sets for the universities pertains to the proportion of students from UK

state-funded schools. Currently, the government’s target for Cambridge University is 64% and is

set to increase to 69% by 2024 (University of Cambridge 2018, 2020). The type of school attended

prior to university is therefore a natural metric for a university keen on enhancing socioeconomic

diversity on campus.

Going forward, we take females to be the ‘protected’ group for gender and the state-educated

5In total, about 6% of UK children attend privately-funded schools (Sibieta 2021), although this proportion rises

for 16+ year olds.
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for socioeconomic status. Our subsequent analysis will allow us to verify whether indeed these are

protected groups, i.e. whether the university is willing to sacrifice expected academic performance

in order to admit more students from them.

2.2 Cambridge exams as outcomes

Recall that Cambridge states that selecting ‘students of the highest intellectual potential’ is the

main objective of its admission policy. To take our model to the data, we need a measure of student

outcomes that closely correspond to this objective. Using the students’ subsequent exam results

seems to be a natural choice, since it is the outcome by which the University itself measures its

objectives and it carries important consequences for the students in terms of future opportunities,

as discussed in the introduction.

Most undergraduate degrees in Cambridge are three years long.6 Every year, students enrol in

multiple courses. For each course, all students sit the same centrally-set exams, with no variation

by college, and their scripts are marked blindly, making their scores comparable with one another.7

These exams are typically sat at the end of the year. The final transcript at the end of the degree

lists the student’s performance in each year separately.8

2.3 Admission procedure

In contrast to the liberal arts approach in countries like the United States, the UK university

system including Cambridge, requires prospective students to apply for a specific subject, e.g.

Mathematics, Law, Engineering etc. Having chosen the subject they want to study for their degree,

a student applies to one of Cambridge’s 29 constituent colleges, which take undergraduate students.

The student can only apply to one subject and one college. The college conducts assessment for

that applicant in that subject and makes the final decision on whether to admit the applicant.

Each college has an approximately fixed number of places for each subject, which is agreed at the

university level. After enrolling, changing subject is difficult, though not impossible. Once admitted

to a specific college, students cannot change to a different one. For the purpose of this paper, we

view the aggregate admission process as pertaining to the entire university. This is similar to other

institutions, where different admission officers make decisions about individual applications but

the general policy is set at the university level and so admission results are typically assessed at

the level of the university as a whole. Indeed, crime-detection, legal sentencing etc. also have

6In our data, notable exceptions are Engineering, Mathematics and Medicine that (can) last longer. We discuss

this in Section 4 where we describe our data.
7When marking exams, faculty members do not know the names of the candidates, and only see their registration

number on the script.
8During the period of our dataset, there was no aggregation across years to produce a final indicator, unlike an

aggregate GPA in US universities.
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this general feature where individual police officers and individual judges respectively make the

relevant decisions, and it is the aggregate decision of the institution as a whole that is assessed by

researchers.

The exact admission procedure at Cambridge varies slightly by subject and college, but the

general procedure consists of the following steps. Students in most subjects take an admission

test, which is the same across all colleges. Those who perform well are then invited to a second

assessment – usually an interview – and the rest are rejected. After the second assessment, the

college makes its admission decisions, based on the results of assessments and the strength of the

student’s file, which includes school-leaving exam scores, reference letters and the statement of

purpose.

The admission decision has two tiers. The students deemed strongest are admitted directly by

the college they had applied to. We will refer to these first-tier admissions as ‘direct admission’.

The college also identifies a subset of the remaining students who did not make it into the first

group but are still relatively strong, and they are placed in a common ‘pool’. Those colleges that

have not filled all of their places with the first-tier candidates admit one or more students from

this pool.9 We refer to the candidates admitted in this way as the pooled or second-tier admits.

About 20% of students in our sample are admitted via the second tier. This two-tier structure of

the admission system plays an important role in our empirical strategy.

Cambridge is seen as a top UK University and one of the best in the world for undergraduate

education. Hence, UK candidates who get an admissions offer at Cambridge almost never turn

Cambridge down, and the fraction of foreign candidates who do so is small. So, by and large,

admission offers are made to the best students, without much regard to whether they may be

considering a different university.10Cambridge offers are made early (in January for October) and

so are typically conditional on attaining certain grades in high school or other specific exams

taken later. A minority of candidates who get an offer do not meet their conditions, and they are

eventually rejected by the University (see Appendix C.1 for details and Figure 5 for the summary

of Cambridge’s admission process.).

3 Formal framework and identification

This section sets up an empirically motivated theoretical framework to identify and quantify the

potential diversity-performance-trade-off accepted by the university, which we then take to the data

in Section 5.

Toward that end, we first propose a model of the university’s admission (section 3.1) which de-

9The pool takes place soon after the first tier decisions are made, and, after its completion, the offers for first and

second tier decisions are sent out on the same day.
10Rules governing UK applications do not allow students to apply to Cambridge and Oxford at the same time.
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rives the marginal condition indicating the trade-off. Underlying our methodology is Becker’s 1971

insight that if preferences for diversity cause decisionmakers to deviate from the aim of maximizing

an eventual outcome, then, at the margin of a positive decision, those who are favoured by the

policy would have a lower expected outcome.

Second, taking the conditions derived in the model directly to the data is challenging due to

unobservability of a number of factors known to the admission decisionmakers, making it impos-

sible to identify marginal candidates. To address this infra-marginality problem, we develop an

identification strategy based on the two-tier admission process followed in Cambridge (section 3.2).

3.1 Model of trade-off

We first provide some graphical intuition to motivate our formal model. Then we explain our main

assumptions, before developing the model.

3.1.1 Graphical intuition

Consider Figure 1 which plots the distribution of expected value of the outcome of interest (for

example, post-entry academic performance predicted from pre-admission credentials) for two groups

of applicants, termed Red and Blue. The left graph corresponds to the admission decision which

uses the same cutoff for expected outcome in both groups, which is equivalent to equalizing the

expected outcome of marginal candidates from the two groups.11 This, however, leads to different

numbers of students entering from each group, because the right tail of the Blue distribution is

thicker than that of the Red distribution. This corresponds to the case where the decisionmaker

wants to simply admit students with the highest expected outcome and thus ends up admitting

more Blues than Reds. The right graph, on the other hand, corresponds to the decision where

the number of Blue and Red students entering is made equal by fixing the admission cutoff to be

lower for the Red group. These represent the two extreme cases where the decisionmaker cares

only about expected outcome or only about equality in numbers.

Now consider a decisionmaker who values both objectives. We say that a trade-off between

demographics and expected outcome exists if such a decisionmaker has to sacrifice some amount

of expected outcome in order to improve demographics and vice versa. This is the case that we

formalize and estimate using the data.

11In what follows, we will use the terms ‘difference in cutoffs’ and ‘difference in marginal performance’ interchange-

ably.
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Figure 1: Potential diversity-performance trade-off
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3.1.2 Key assumptions

The decisionmaker’s problem rests on three key assumption, viz. the objective, the information

and the constraints.

The decisionmaker’s objective has two parts. First, we assume that the university aims to maxi-

mize the expected value of a specific outcome across students, academic performance in our context

(see introduction and Section 2.2). In addition, the university is assumed to potentially care about

diversity in its objective function, by putting a weight on the number of students it admits from

a currently underrepresented group. This reflects widespread concerns about diversity in higher

education in general and in Cambridge specifically. Section 2.1 discusses how these assumptions

emerge from our institutional context. In the main model we assume that the decisionmaker is

risk-neutral, and then relax this assumption in Section 3.3.

Second, we assume that during admissions the university observes the applicants’ characteristics,

which it uses to make an unbiased assessment of their future performance. In Section 3.4, we relax

this and discuss implications of biased beliefs.

Third, we assume that the university faces a constraint on the total number of students it can

admit, which reflects UK government regulations and the university’s own resource constraints.

3.1.3 Model and analysis

We model the first round admission decision of the university, i.e. which applicants to admit directly

from two groups denoted by G = g and G = h. Let h be the ‘protected’ category – e.g. g can

be males and h females, or h can be state-school educated and g privately educated, etc. Suppose

that the number of applicants in the two groups g and h is Ng, Nh respectively and total number

11



of places is M . Let Y denote the random variable representing the potential outcome of interest

(e.g. future academic performance). Assume that as its efficiency objective, the university wants to

maximize aggregate future outcome, and as its diversity objective, it wants to increase the number

of students from the ‘protected’ group h.12

The university observes characteristics X but not Y when making the admission decision.

The researcher observes a subset of X for all applicants and Y for admitted applicants. We

assume for now that the university makes an unbiased prediction for performance given observed

characteristics.

Accordingly, suppose the university’s overall objective is to decide which subset of applicants

defined by values of X should be admitted, i.e. pick the sets Xg ⊑ support(X|G = g) and Xh ⊑
support(X|G = h) to satisfy the following objective:

max
Xg ,Xh

[NgE (Y × 1 {X ∈ Xg} |G = g) +NhE (Y × 1 {X ∈ Xh} |G = h) + βNh Pr {X ∈ Xh|G = h}] ,

(1)

where β ∈ R, subject to

Ng Pr {X ∈ Xg|G = g}+Nh Pr {X ∈ Xh|G = h} = M . (2)

Here, the first part of the objective functionNgE (Y × 1 {X ∈ Xg} |G = g)+NhE (Y × 1 {X ∈ Xh} |G = h)

equals the aggregate correctly expected (by the university) future outcome of the admitted g-types

plus that of the admitted h-types; the second part Nh Pr {X ∈ Xh|G = h} is the number of h-types

admitted, while β is the relative weight on diversity vis-a-vis outcomes. The constraint (17) simply

equates the number of admits to the number of available places. We will use our data to learn the

value of β which will throw light on the extent of trade-off that the admission process entails. Note

that if β > 0, then the university values applicants from group h, if β < 0, it has an aversion to

them, and if β = 0, then it is neutral.

Note that the objective function in (16) implicitly makes the simplifying assumption that the

distributions of post-entry outcomes are not affected by the fraction of g or h types admitted, i.e.

rules out peer-effects of the type found in Bostwick and Weinberg 2022. Indeed, when we test for

presence of peer-effects, we do not find them (see Section 5.6.1).

To make further progress, define the random variables Ag (X) ≡ E (Y |X,G = g) and Ah (X) ≡
E (Y |X,G = h). They denote expected values of Y as inferred by the admission officers on the

basis of the X’s, respectively. As the value of X varies among g/h-type applicants, so does the

12For simplicity, we abstract from the possibility that some of the applicants to whom the university makes an offer

may not arrive. Allowing for this does not change the main implication of the model, summarized by Claim 2, even

if the rates of arrival are different across groups (see discussion in Appendix C.1.)
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value of Ag/Ah. Let Fg, Fh denote the marginal CDFs and fg, fh denote marginal densities of Ag,

Ah, respectively.

We now state and prove our main theoretical results which provide a solution to the problem

(16) in terms of quantities potentially (set-)identifiable from the data.

Claim 1 The solution to the problem (16) solves the problem:

maxg1,h1

[
Ng

∫∞
g1

afg (a) da+Nh

∫∞
h1

afh (a) da+ βNh (1− Fh (h1))
]

s.t. Ng (1− Fg (g1)) +Nh (1− Fh (h1)) = M
(3)

for some real numbers g1 and h1 (Proof in Appendix)

Intuitively, this means the university’s problem is that of choosing the thresholds g1 and h1

such that, in each group, all applicants with expected performance above these cutoffs are directly

admitted. In (3), the term
∫∞
g1

afg (a) da equals the expected future outcome of admitted g-types,

(1− Fg (g1)) is the fraction of g-type applicants who are admitted, and analogously for h-types.

We now show that the solution to the problem (3) takes a particularly simple form that relates

the parameter β to the difference in admission cutoffs for the two groups.

Claim 2 If Ag and Ah are continuously distributed, then the problem (3) has a unique interior

maximum, where β = g1 − h1. (Proof in Appendix)

The expression g1 − h1, the difference between the cutoffs for direct admission, is the difference

between the expected performance of marginal candidates from the two groups. If the decisionmaker

were maximizing just the performance objective (β → 0), they would set g1 − h1 = 0. Conversely,

if they were only maximizing h-type enrolment (β → ∞), they would set Nhs = M . Our goal is to

learn the value of β, or equivalently g1 − h1, from the data.

It is important to note that the proof of claim 2 does not require any functional form assumptions

on unobservables, e.g. that expected performance is normally distributed etc. In that sense, it is

a nonparametric (identification) result that expresses the latent structural object β characterizing

preferences, in terms of the reduced form parameter g1−h1, using an economic model of constrained

optimization.

3.1.4 Roy model and treatment assignment

Problem 16 can be interpreted in the light of an Extended Roy Model (ERM), as in Canay et

al. 2022, who develop a general framework for thinking about outcome tests of discrimination.

Our Claim 2 is analogous to their theorem 4.2, but differs from it owing to the binding capacity

constraint. In Appendix B, we elaborate further on this analogy.
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Problem 16 is also similar in spirit to that of optimal treatment assignment, subject to resource

constraints, considered previously in Bhattacharya and Dupas 2012. That paper was concerned with

recommending the optimal decision based on results from a randomized experiment, as opposed to

assessing a decisionmaker’s preferences from an observational dataset, which is our goal here.

3.2 Identification

Suppose g1 and h1 were observed empirically. Then, bringing the model to the data would allow

us to do three things:

1. We can identify whether there is a diversity-performance trade-off. As implied by the deriva-

tions above, the decisionmaker makes a trade-off if g1 ̸= h1, and does not if g1 = h1. n

the latter case, when we cannot reject g1 = h1, the likely explanation is that an acceptable

number of h-types get in, so that the decisionmaker does not need to consider demographics

separately in admissions, and they set β = 0.

2. Where the decisionmaker makes a trade-off, we can find the weight β they place on the

number of admits from the protected group h.

3. We can crudely measure the size of the trade-off ex-post, in terms of actual performance

forgone and additional students admitted from group h (see section 5.3).

How does one measure g1 and h1 empirically? If admission depended on a single test-score, as

for example in some engineering colleges in India (cf. Bernard et al. 2010), the values of g1 and h1

would be known from the lowest admission test-scores among the admits of each group g and h. But

in most cases, including at Cambridge, admission depends on a lot of different variables associated

with each applicant, some of which are typically unobservable to the researcher. Therefore, it is

not possible in general to learn the values of g1 and h1 directly from the data. To address this, we

develop a method to identify the differences in admission cutoffs, by exploiting the fact that many

students enter universities, including Cambridge, via waitlists or second round clearing.

Toward that end, define εg = Y −E (Y |X,G = g), implying by definition that E (εg|X,G = g) =

0, and therefore E (εg|Ag) = 0, since Ag = E(Y |X,G = g) is solely a function of X. In particular,

this implies that with Fg (·) denoting the marginal CDF of Ag, any set C with Fg (·)-positive
probability, we have that:

E (εg|Ag ∈ C) =

∫
a∈C

E (εg|Ag = a)︸ ︷︷ ︸
=0

dFg (a) = 0. (4)

This implication will be used below.

Recall that in our setting the university practices a two round admission process, first is direct

admission, and second is the so-called pool. Hence, the admission decision can be summarized
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via three cutoffs g2 < g3 < g1 such that if Ag > g1, then the applicant is admitted directly, if

Ag < g2 then s/he is rejected straight away, and if g2 < Ag < g1, then the candidate is put in the

pool. Finally, if g3 < Ag < g1, then the candidate is eventually admitted from pool. For h-type

applicants, denote the analogous quantities by Ah and h1, h2, h3 respectively.

3.2.1 Bounding β

We will now show how to identify lower and upper bounds of β = g1 − h1.
13 The econometrician

observes the outcomes of all entrants and, in particular, those of pooled g-type admits (Y |g3 <

Ag < g1, G = g), and of directly admitted h-type admits (Y |Ah ≥ h1, G = h). Therefore, the

average outcome of pooled g-type admits equals

E [Y |g3 < Ag < g1, G = g]

= E [Ag + εg|g3 < Ag < g1, G = g] (5)

= E [Ag|g3 < Ag < g1, G = g] + E [εg|g3 < Ag < g1, G = g]︸ ︷︷ ︸
=0 by (4)

= E [Ag|g3 < Ag < g1, G = g] < g1, (6)

while the average outcome of directly admitted h-type admits equals

E [Y |Ah ≥ h1, G = h] = E [Ah + εh|Ah ≥ h1, G = h]

= E [Ah|Ah ≥ h1, G = h] + E [εh|Ah ≥ h1, G = h]︸ ︷︷ ︸
=0 by (4)

= E [Ah|Ah ≥ h1, G = h] ≥ h1. (7)

It follows from (6) and (7) that

g1 − h1 > E [Y |g3 < Ag < g1, G = g]− E [Y |Ah ≥ h1, G = h] . (8)

The RHS, which is estimable from our data, thus provides a lower bound on the difference in

cutoffs for direct admissions g1−h1. In particular, if the average outcome for pooled g-type admits

is (weakly) higher than that of directly admitted h-type admits, i.e.

E [Ag + εg|g3 < Ag < g1, G = g] ≥ E [Ah + εh|Ah ≥ h1, G = h] , (9)

then g1 > h1. In fact, if Pr (g3 < Ag < g1|G = g) > 0, and Pr (Ah > h1|G = h) > 0 – corresponding

to the likely scenario that expected performance is continuously distributed – then even equality of

mean outcomes, i.e. E [Ag + εg|g3 < Ag < g1, G = g] = E [Ah + εh|Ah ≥ h1, G = h] will also imply

that g1 > h1.

13Indeed, g3−h3 is also an interesting parameter of interest, but its identification is impossible because of standard

inframarginality problems, as noted by a referee.
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These ideas are graphically illustrated in Figure 2, where the distribution of conditional expected

outcome of the two hypothetical groups are plotted in the two graphs, and the rightmost vertical

lines in the left and right graphs represent g1 and h1, respectively. The shaded areas in the left

and right graphs correspond to sets (Ag + εg)|g3 < Ag < g1, G = g and (Ah + εh)|Ah ≥ h1, G = h

respectively. If g1 = h1, then every individual in the shaded area on the left (for group g) must score

lower than every individual in the right shaded area (for group h), up to random noise. Therefore,

the average on the left must be less than the average on the right. A contradiction implies that

the rightmost vertical line in the left figure must be at a higher level of ability than the rightmost

vertical line in the right figure. That is the basis of our (partial) identification approach.

Figure 2: Identifying differences in cutoffs
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Remark 1 Note that reversal of the inequality (9), i.e. E [Ag + εg|g3 < Ag < g1, G = g] < E [Ah + εh|Ah ≥ h1, G = h],

is consistent with both g1 > h1 and g1 < h1, and is therefore inconclusive.

A completely analogous argument leading to (8) applies mutatis mutandis to the upper bound,

viz.

g1 − h1 < E [Ag + εg|Ag > g1, G = g]− E [Ah + εh|h3 < Ah < h1, G = h] (10)

The RHS of (10) is the difference in average performance between directly admitted g-types and the

h-types admitted from the pool, and it provides an estimate of the upper bound of the difference

in admission cutoffs.

3.2.2 Identifying the trade-off

As discussed in Section 3.1, to identify a diversity-performance trade-off we need to know whether

g1 − h1 > 0. Since we do not observe g1 − h1, but rather its lower and upper bound, we have
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some freedom to decide when the trade-off is present. We will use the most conservative rule and

say that we ‘identify a trade-off’ only when both estimated lower and upper bounds of g1 − h1 are

significantly above zero. Then, RHS of (8) and RHS of (10) give us the lower and the upper bound

for the magnitudes of the trade-off at the margin. We use them to bound β, the relative weight on

the demographic characteristic in the decisionmaker’s objective.

In contrast, when the lower bound of the cutoff difference is significantly below zero or includes

zero in its confidence interval and the upper bound is significantly above zero, we will say that

there is ‘no conclusive evidence of a trade-off.14

3.3 Relaxing assumptions: Risk aversion

We now relax the assumption that decisionmaker is risk neutral, and instead suppose they are risk

averse and base the admission decision on Bg ≡ E (U (Y ) |X,G = g) for a concave, increasing U (·),
instead of E (Y |X,G = g). Now if the distribution of Y |g3 < Bg < g1, G = g first-order stochastic

dominates (FOSD) that of Y |Bh ≥ h1, G = h (as found in the empirics and reported in Section

5.2), then E [U (Y ) |g3 < Bg < g1, G = g] ≥ E [U (Y ) |Bh ≥ h1, G = h] for all increasing U (·), and
therefore,

g1 − h1 > E [U (Y ) |g3 < Bg < g1, G = g]− E [U (Y ) |Bh ≥ h1, G = h] ≥ 0. (11)

Thus under FOSD, the conclusion of higher admission cutoffs for g-types, i.e. the positive sign of

g1 − h1 is robust to risk-aversion considerations.

3.4 Relaxing assumptions: Wrong beliefs

Our model in Section 3.1 assumes that the decisionmaker forms correct beliefs about expected

outcomes of admitted students. So any differences in the performance of marginal candidates are

due to the university’s desire to diversify student intake by setting different admission cutoffs.

However, if the decisionmaker has systematically incorrect beliefs, they can lead to differences in

performance of marginal candidates, even in absence of the diversity motive. In this case, the

university unintentionally sets admission cutoffs at different levels due to incorrect beliefs. A

number of authors, including Bohren et al. 2021 and Canay et al. 2022, have previously noted this

type of observational equivalence. In this section we consider three examples of plausible wrong

beliefs that might give rise to this.

14The remaining possibility is RHS of (8) > 0 and RHS of (10) is ≤ 0, i.e. the candidates taken from the pool

outperform directly admitted ones. This would imply that the two-tier admission system is not working as intended,

invalidating our identification strategy. In Section 4.3 we show that this never occurs in our data, i.e. both in

aggregate and within each group, pooled candidates underperform directly admitted ones.
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3.4.1 Biased beliefs favouring h

The university may have biased beliefs favouring h-type, predicting that each h-type person will

score β more than what they truly would.

Then, even if the university’s objective is purely to maximize the expected performance, the

consequences of these incorrect beliefs will be that the marginal g-type will perform better than

the marginal h-type, implying g1 − h1 = β, same as in Claim 2. This can be seen by rewriting our

objective function in (3) as

max
g1,h1

[
Ng

∫ ∞

g1

afg (a) da+Nh

∫ ∞

h1

(a+ β) fh (a) da

]
,

where the CDF of the true future outcomes of group h is shifted to the right by β. Hence, the

empirical prediction of this is the same as when the university cares about diversity but is unbiased.

3.4.2 Ignoring group differences

Another alternative is that group identity is in fact ignored by admission officers during decision-

making.15 This can produce systematically biased beliefs as well, e.g. if given the same observed

covariates X, the g-types have higher predicted outcomes, i.e., E (Y |X = x, g) = E (Y |X = x, h)+

β. However, the admission officers do not take group differences into account, and instead use

E (Y |X = x) to make the decision, i.e. admit if E (Y |X = x) ≥ γ, for some threshold γ. Now,

since

E (Y |X = x) =
Ng

Ng +Nh
E (Y |X = x, g) +

Nh

Ng +Nh
E (Y |X = x, h)

=
Ng

Ng +Nh
β + E (Y |X = x, h)

= E (Y |X = x, g)− Nh

Ng +Nh
β,

it follows that for those deemed to be the marginal entrants in the two groups satisfy

E (Y |X = x, h,E (Y |X = x) = γ) = γ − Ng

Ng +Nh
β,

E (Y |X = x, g, E (Y |X = x) = γ) = γ +
Nh

Ng +Nh
β;

and so the difference between the two equals

γ +
Nh

Ng +Nh
β − γ +

Ng

Ng +Nh
β = β.

This situation could arise when the ‘returns’ to applicant characteristics X observable during

admissions differ by group, but the admission decisionmakers do not take this into account (e.g.

15We are grateful to an anonymous referee for raising this possibility.
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as in Kleinberg et al. 2018b). Whilst the main prediction of this would be the same as when

the unbiased decisionmaker cares about diversity, this mechanism generates two more empirical

predictions: (i) the returns to pre-admission characteristics are different across the two groups and

(ii) these differences help explain the observed differences in thresholds. In section 5.6.2, we show

that, when it comes to gender, there is some evidence of (i) but not of (ii). These results suggest

that admission decisionmakers ignoring group differences is unlikely to explain the differences in

the thresholds which we observe.

3.4.3 Incorrect weights on pre-admission qualifications

Another possibility is that admission officers place the wrong weights on different pre-admission

qualifications. This may lead to the same prediction as under the unbiased but diversity-concerned

decisionmaker, i.e. to differences in observed admission thresholds, if these mistakes systematically

benefit one of the groups more than the other.16 In Section 5.6.2 we report two findings: first, ad-

mission officers appear to underweight more specialist mathematical training and overweight more

general training of applicants, relative to their importance for student outcomes. Second, female

applicants have less of the former and more of the latter training compared to male applicants.

Although these findings are only suggestive, they are consistent with such incorrect beliefs.

To summarize, by purely looking at marginal candidates, it is not possible to say whether

diversity motives or wrong beliefs drive the observed differences in admission cutoffs. Further

analysis with additional data lends some support to incorrect weights on qualifications (3.4.3) but

not to the neglect of group differences (3.4.2). Additionally, the idea that the university simply

systematically overstates future performance of females (3.4.1) is somewhat implausible since the

gender-gap in exam attainment is well documented and widely discussed at Cambridge, cf. Ingrey

2021.

At the same time, the fact that we find conclusive evidence of lower admission cutoffs for

females only in mathematically intensive subjects where females are in the minority, but not in

other subjects, where they constitute 50% or more (section 5), lends support to the diversity

mechanism. The fact that the university maintains similar offer probabilities across genders in

most subjects, with females facing an offer probability that slightly but statistically significantly

higher when they are in a minority (MI subjects) and slightly but significantly lower when they are

in the majority (non-MI subjects) also points at the diversity motive (see Tables 2 and Appendix

D). So in what follows, we will continue to use the diversity model for interpretation, whilst keeping

in mind that one cannot fully rule out systematically biased beliefs.

16We are grateful to an anonymous referee for suggesting this.
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4 Data

In this study, we utilize administrative micro-data on individual students from the Cambridge

Admissions Office. The data contain student characteristics: gender, school-type, pre-admission

qualifications, subject, college, whether admitted directly or from the pool, and exam performance

after entering Cambridge. table Cambridge offers undergraduate degrees in roughly 30 subjects. In

this paper, we focus on seven larger subjects which jointly account for about half of Cambridge’s un-

dergraduates. These are Economics, Engineering, Mathematics, Biological Sciences, Law, Medicine

and Physical Sciences.

Among these, Economics, Engineering, Mathematics and Physical Sciences have higher quan-

titative content and require more advanced mathematical preparation than Law, Medicine and

Biological Sciences. In Cambridge, the former group of subjects have a minimum mathematics

requirement that the applicants must fulfil before coming to Cambridge, while the latter group

do not (cf. University of Cambridge 2022a).17 Henceforth, we will refer to the former group as

mathematically intensive (MI) subjects. The two groups of subjects are similarly competitive as

measured by the offer probabilities: they are 22% for non-MI subjects and 24% for MI subjects.

Our sample consists of just under 6 thousand students, representing all students who entered

Cambridge in 2013-2016 to study these subjects, and stayed till the end of their degree. In Appendix

C we discuss the sample, and construct several tests to assure ourselves that sample attrition is not

driving our results.

As student outcomes, we use scores in their end-of-year exams, the same measure as that used

by the University of Cambridge to assess the students (see Section 2 for more details). The exams

are held at the end of the academic year, one for every course the student took that year. We do

not have access to scores on individual papers (except in Economics). Instead, we use the average

percentage of marks obtained by the student across all of their exams taken that year, standardized

by subject, as our outcome of interest. Since exams take place once a year over three years of their

degree, we have three performance observations per student, one in each year of their degree.18

Our initial analysis focuses on first-year performance and is then extended to subsequent years to

examine the longer term validity of our main conclusions.

As discussed in Section 2.1, we focus on two student characteristics: gender and socioeconomic

status. Gender is observed in our dataset. As proxy for socioeconomic status among UK students

17Economics, Engineering and Maths require applicants to have a minimum level of mathematics, e.g. Mathematics

A-level in the UK school system, for their application to be considered. The same is required to enrol in Physical

Sciences courses. In contrast, there is no such requirement for Biological Sciences, Law or Medicine. (University of

Cambridge 2022b).
18In our sample, there are some exceptions to the three year rule: Engineering degree is four years long, Mathematics

has an option to proceed to a fourth ‘bonus’ year and Medical degree is six years, including clinical study. For these,

we use the first three years of exam performance for comparability.

20



we use whether they attended a state-funded or a privately-funded school, as discussed in Section

2.

Each of these characteristics has two categories: for gender, we label them h = female and

g = male, for school-type, UK applicants from state-funded schools are labelled h and applicants

from privately-funded schools g. Hence, in the language of Section 3.1.3, h is always the protected

characteristic.

4.1 Gender

The gender composition of our sample is summarized in Table 1. In the subjects we analyze, 36%

are female, but with marked differences across subjects. In non-mathematically intensive subjects,

Law, Medicine and Biological Sciences, the number of females is close to or over 50%.19 However,

in mathematically intensive subjects it is significantly lower, at 24%. This pattern of female under-

representation in mathematically intensive subjects is in line with what has been widely documented

before in different settings cf. Wang and Degol 2017.

Turning to the probability of getting an offer from Cambridge in Table 2, across all subjects

there is virtually no gender gap, with 23.9% and 23.2% respectively for males and females.20,21 In

mathematically intensive subjects, where they are overrepresented, males are slightly less likely to

get an offer (23% vs 25%, and the gap is significant at 5% level), whilst the opposite is true in

non-mathematically intensive subjects where they are underrepresented (24% vs 21%, and the gap

is significant at 1% level).22 These differences are suggestive that the decisionmaker is interested

in gender balance as modelled in Section 3.1, but alone cannot be used to draw conclusions about

the existence of performance-diversity trade-off.

We also see in Table 2 that, once admitted to Cambridge, males outperform females in the

first-year exams in all subjects. The average first-year gap is 0.3 standard deviations (in terms of

raw marks, which are expressed as percentages, this corresponds to about 3.5 percentage points

difference, whereas the average first-year exam score is around 65%). The differences are signif-

19Overall, Cambridge undergraduate are evenly split by gender (University of Cambridge, 2022c). This is not the

case in our sample, which does not include many smaller humanities and social science subjects where females are

often in the majority.
20As discussed in Section 2, not all of the offer holders arrive, mostly because they fail to fulfil the conditions of

their offer. We provide some data on this and discuss the implications for our analysis in Appendix C.1.
21For historical reasons, admission data treat applicants to Biological Sciences and Physical Sciences as one group,

despite different requirements and process. For the main sample used in the paper, which is the admitted students

who finish their three year degree, we can separate the two groups using data on their third year exams. However,

for a few additional exercises when we need a larger sample, viz. calculating offer probabilities and some tests in

appendixes, these two subjects are not separately identified. So, they are excluded from these in cases when we look

at MI and Non-MI groups separately (but are still included in total numbers).
22These gaps in offer probabilities persist, and are slightly larger when we control for high school qualifications (see

Appendix D).
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Table 1: Gender composition of subjects

N Percent female SE

(1) (2) (3)

All subjects 5888 35.8 0.6

MI subjects 3544 24.4 0.7

Economics 547 33.8 2.0

Engineering 957 24.2 1.4

Mathematics 818 15.0 1.3

Physical Sciences 1222 26.6 1.3

Non-MI subjects 2344 53.0 1.0

Law 645 56.3 2.0

Medicine 895 45.0 1.7

Biological Sciences 804 59.3 1.7

Note. N : number of admitted students. Percent female: Per-

centage of female students in total admitted. SE : Standard

error of Percent female. MI subjects: Mathematically inten-

sive subjects, with math prerequisites. Non-MI subjects: Non-

mathematically intensive subjects, without math prerequisites.

icantly larger in mathematically intensive subjects than in the rest. Among the former group of

subjects, those with a lower proportion of females have a bigger gap between average male and

female performance. These gender differences in average performance persist when we control for

high school qualifications (Appendix I).

By the end of the third year, average student performance improves in all subjects. Furthermore,

gender differences shrink, to an average of 0.1 standard deviations (or 0.9 percentage points relative

to the average third year exam score of 66.5%). The gap closes in Biological Sciences, and is reversed

in Medicine. In the rest of the subjects, the gender gap remains statistically significant.

Although these gender differences in average performance are suggestive, they cannot be used

to draw conclusions about the diversity-performance trade-offs because the differences in average

performance are generally not informative about the differences in performance of marginal candi-

dates.
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Table 2: Gender, offer probabilities and performance

N Percent female
Offer probability Female score - Male score

Females Males Year 1 Year 3

(1) (2) (3) (4) (5) (6)

All subjects 5888 35.8 23.2 23.9 -0.32 -0.11

SE All 0.6 0.4 0.3 0.03 0.03

MI subjects 3544 24.4 25.0 23.4 -0.44 -0.25

SE MI 0.7 0.6 0.4 0.04 0.04

Non-MI subjects 2344 53.0 20.7 23.9 -0.25 0.02

SE Non-MI 1.0 0.6 0.6 0.04 0.04

Note. N : number of admitted students. Percent female: Percentage of female students in total admitted. Of-

fer probability : Percentage receiving offer for admission, by gender. Female score - Male score: The difference

between the standardized average exam score achieved by females and that achieved by males, in standard

deviations. All differences are significant at 1% level except for Non-MI subjects Year 3, which are insignif-

icant at conventional levels. MI subjects: Mathematically intensive subjects, viz. Economics, Engineering,

Mathematics and Physical Sciences except in Offer Probability column which excludes Physical Sciences (see

above) non-MI subjects: Non-mathematically intensive subjects, viz. Biological Sciences, Medicine and Law,

except Offer Probability column which excludes Biological Sciences. SE All/MI/Non-MI: standard errors.

Table 3: School-type composition and performance

N Percent state
Offer probability State score - Private score

State Private Year 1 Year 3

(1) (2) (3) (4) (5) (6)

Mean 4233 64.1 27.3 36.2 -0.14 -0.11

Standard error 0.7 0.4 0.6 0.03 0.03

Note. UK students only. N : number of admitted UK students. Percent state: Percentage of students

who went to state-funded schools in total admitted. Offer probability : Percentage receiving offer for

admission, by category. State score - Private score: The difference between the standardized average

exam score achieved by students who went to state-funded schools and that achieved by students who

went to privately-funded schools, in standard deviations.
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4.2 School-type

To capture socioeconomic background, we use the UK government’s main metric, which is whether

the student went to a state- as opposed to a privately-funded school in the UK (see Section 2.1).

Table 3 shows that in our data, 64% of admitted students come from state-funded schools, which

happens to be the government’s official target for Cambridge during this period. At the same time,

students from privately-funded schools are more likely to receive an offer, and, once admitted, they

outperform their peers from state-funded schools, on average.

4.3 Pool

Recall that the key to our empirical approach is the two-tier admission process, where some students

are admitted directly (first tier) and others are admitted after being put in the pool (second tier).

The latter group stands at about 1,215 students, or 20% of our sample.

Table 4 shows that in the first year, students admitted directly significantly outperform those

admitted from the pool, by 0.2 standard deviations on average in all subjects. These differences

shrink by the time the students reach their third year, but remain statistically significant, for

both groups of subjects (MI and non-MI). The fact that candidates taken from the pool are weaker

confirms that the two-tier admission system is working as intended and validates our key identifying

assumption.
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Table 4: Two tiers of admission

N Taken from the pool (%)

Exam score differences

Direct - Pool

Year 1 Year 3

(1) (2) (3) (4)

All subjects 5888 20.6 0.21 0.13

SE All 0.5 0.03 0.03

MI subjects 3544 18.5 0.22 0.10

SE MI 0.7 0.04 0.04

Non-MI subjects 2344 23.9 0.20 0.18

SE non-MI 0.9 0.05 0.05

Note. N : number of admitted students. Direct - Pooled : The difference between the stan-

dardized average exam score achieved by directly admitted students and that achieved by

students taken from the pool, in standard deviations, in Year 1 and Year 3 as denoted by col-

umn headings. MI subjects: Mathematically intensive subjects, viz. Economics, Engineering,

Mathematics and Physical Sciences; non-MI subjects: Non-mathematically intensive subjects,

viz. Biological Sciences, Medicine and Law. SE All/MI/Non-MI : standard errors.

5 Results: Gender

We now present our empirical findings on gender-performance trade-off, separately for subject

groups based on their mathematical intensity.

5.1 Identifying and measuring the trade-off: mean comparisons

As discussed in Section 3.2.2, we identify performance-diversity trade-off by comparing mean exam

performance across the groups. These (standardized) means of first-year exam performance at

Cambridge are presented in Table 5, where g are males and h are females. Namely, the difference

between average performance of pooled males (column (1)) and directly admitted females (column

(2)) gives us the lower bound of the difference in admission thresholds and hence β, the weight on

diversity in the university’s objective function (column (3)). Whilst the difference between average

performance of directly admitted males (column (4)) and pooled females (column (5)) gives us the

estimate of the upper bound of β (column (6)). The standard errors reported here are equal to the

estimates of the standard deviation of performance in each group (e.g. ‘Pooled males in non-MI

subjects’) divided by the square root of the number of observations in that group.
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Recall that we use the most conservative rule to identify the trade-off, i.e. we conclude there is

one if and only if both the lower and the upper bounds of β are significantly greater than zero.

Table 5: Identifying and measuring the trade-off: Gender

Pooled DA Lower DA Pooled Upper

males (g) females (h) bound of β males (g) females (h) bound of β

(1) (2) (3) (4) (5) (6)

non-MI subjects

Mean -0.04 -0.07 0.02 0.17 -0.23 0.39

SE 0.07 0.03 0.08 0.03 0.05 0.06

MI subjects

Mean -0.06 -0.30 0.25 0.14 -0.45 0.59

SE 0.04 0.04 0.06 0.02 0.06 0.07

Note. Pooled males (g)/females (h): average standardized performance in year 1 exams of students admitted from the

pool from group g(males)/h(females). DA males (g)/females(h): average standardized performance in year 1 exams of

students directly admitted from group g(males)/group h(females). Lower bound of β: lower bound of the weight on

diversity in the university objective function = Pooled g - DA h. Upper bound of β: upper bound of the weight on

diversity in the university objective function = DA g - Pooled h. MI subjects: Mathematically intensive subjects, viz.

Economics, Engineering, Mathematics and Physical Sciences; Non-MI subjects: Non-mathematically intensive subjects,

viz. Biological Sciences, Medicine and Law. SE : standard errors, equal to the estimate of the standard deviation of

performance divided by the square root of the number of observations, for each group.

Our conclusions from Table 5 are as follows:

Non-mathematical subjects: We find no conclusive evidence of a trade-off between gender

equality and performance for these subjects. Although the upper bound of cutoff differences is

positive and significant (column (6)), the lower bound is not significantly different from zero (column

3). Women represent just over 50% in these subjects, so, roughly speaking, gender equality has

been achieved without any conclusive evidence that a performance sacrifice was involved in doing

so. Recall that when we compare average outcomes, females slightly underperform males in these

subjects (Table 2), illustrating that identifying a trade-off using average rather than marginal

comparisons can lead to wrong conclusions.

Mathematically intensive subjects: There is a trade-off between gender diversity and perfor-

mance in these subjects, as both the lower and the upper bounds of the differences in cutoffs are

significantly above zero (columns 3 and 6). Marginal performances are not equalized. Instead,

marginal males outperform marginal females by somewhere between 0.25 and 0.59 of a standard

deviation. The former gives the lower bound on β, the diversity preference parameter in the de-
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cisionmaker’s objective, i.e. the decisionmaker is prepared to forgo 0.25 standard deviations of

performance to admit an additional female student at the margin. This implies that the decision-

maker places a weight of β
1+β = 20% on admitting more women and 80% on academic performance

in their objective function.

Contrast this result with a naive comparison of offer probabilities: as they are very close (23%

for males and 25% for females), one might reach a mistaken conclusion that the admission cutoffs

are set at a similar level for the two groups, and so there is no diversity-performance trade-off (see

also Appendix D).

Remark 2 Note that in all cases, the upper bound of the cutoff differences is positive which, com-

bined with the sign of the lower bound estimates, implies that the pool system is working as intended,

with pooled candidates weaker on average than directly admitted ones across all characteristics.

5.2 Distribution comparisons

In Figures 3, we plot the cumulative distribution function of first-year exam percentage scores

for four subgroups of admitted students: pooled male, directly admitted male, pooled female and

directly admitted female. The panel on the left is mathematically intensive subjects, the panel on

the right is the rest.

In mathematically intensive subjects, we see clear evidence that the distribution of scores for

directly admitted males first-order stochastically dominates the rest, followed by pooled males, di-

rectly admitted females and, finally, pooled females. The fact that pooled males have stochastically

higher exam scores than directly admitted female entrants throughout the distribution suggests that

g1 − h1 > 0, i.e. the de-facto admission cutoff is higher for males, seen in the light of equations

(8) and (10) above. In contrast, the distribution of exam scores for pooled females is first-order

stochastically dominated by the distributions of both pooled and directly admitted male scores.

This confirms our finding that the university faces a gender-performance trade-off in these subjects.

Figure 6 in Appendix F shows that the same pattern also holds in each individual subject in the

mathematically intensive group i.e. Economics, Engineering, Mathematics and Physical Sciences.

This also rules out the possibility that risk aversion can lead to the disparities we observe (cf.

Section 3.3)

In contrast, in non-mathematically intensive subjects (Figure 3, right graph), the performance

of pooled males and directly admitted females is similar, in line with our earlier finding that there is

no gender-performance trade-off for these subjects. In Figure 7 in Appendix F we see this pattern

in each of the individual subjects that comprise this group, viz. Biological Sciences, Law and

Medicine.
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Figure 3: First-year exam scores by pool status and gender, by subject group
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Note. The graph shows the cumulative distribution function of first-year exam percentage scores for different sub-

groups of students. The functions are plotted separately for MI and non-MI subjects

5.3 How large is the trade-off?

We can quantify the aggregate – as opposed to marginal – implications of our estimate of β through

two back-of-the-envelope calculations. The first calculation asks if, using the realized post-entry

performance data, we used the same cutoff for direct admissions from both groups, how much

would average performance increase relative to the case where the cutoffs differ by the magnitude

of the lower bound on g1 − h1 calculated above. The second calculation asks how many more h-

types (and fewer g-types) are admitted because of the difference in cutoffs. In both calculations,

it is implicitly assumed that potential applicants do not change their behavior in response to the

change in admission strategies and that number and types of applicants stay fixed. In other words,

the purpose of these exercises is to quantify the extent of misallocation, not to simulate a general

equilibrium counterfactual. These calculations, derived in Appendix E, are ‘back-of-the-envelope’

in the sense that true post-entry performance is not observed by decisionmakers during admissions.

What are observed are noisy measures of future performance, leading to some mis-classification.

Also, this method assumes that the performance forgone is the same for every student that would

28



not have been admitted using the ex-post measure, which may not be satisfied in reality.

These calculations reveal that relative to our estimate of the counterfactual with the same

admission cutoff for all groups, the university directly admits around 10 additional girls into Math-

ematically Intensive subjects, or 6% of direct female intake (and, hence, does not directly admit

the same number of males). In doing so, the university forgoes around 1.5 standard deviations in

exam performance for each of these students.

5.4 Regression analysis and later years

We now use regression analysis to check robustness of our estimates on the lower bound of β, which

is the critical part in identifying the performance-diversity trade-off (Table 6, Panel A). We also

extend the analysis beyond first-year exams to later years (Table 6, Panel B).

In Table 6, our sample is the pooled males and directly admitted females. In panel A, we

regress standardized first-year exam performance on a dummy indicating pooled males. Across

all subjects (column (1)) this yields a positive, statistically significant coefficient on the dummy

variable implying that pooled males score an average of 0.11 standard deviations higher than

directly admitted female applicants.

Columns (3) and (4) confirm the previous finding that these results are being driven entirely

by MI subjects. In these subjects, the first-year gap is 0.24 of standard deviation, significant at 1%

level and very close to our mean comparison estimate in Table 5. This is the lower bound of the

difference in admission cutoffs and confirms our earlier result that using even the most conservative

measure, the university faces a gender-performance trade-off in these subjects.

With these estimates, we seek to address three key challenges. First, males could apply to

subjects that are more selective in the first round of admissions than females, and so our mean

comparison results may be due to differences in cutoffs across subjects rather than gender. We

address this by including subject fixed effects (column (2) onwards). Second, decisions to admit

and pool candidates are made by individual colleges. Figure 8 in Appendix G shows that colleges

with a higher propensity to put male candidates into the pool tend to be better performing, on

average, and so may be attracting stronger candidates. To address this we include application

college fixed effects (column (3) onwards), and confirm that our result remains the same when we

compare directly admitted females and pooled males who applied to the same college.

We also include offer college fixed effects in column (6) and the result remains significant,

though it is smaller in magnitude and has a larger standard error. This is not surprising, since

there are several large colleges that rarely take from the pool, and so including offer college fixed

effects effectively reduces our sample by nearly 1/3. The reason to include these fixed effects

would be if colleges that are more likely to take (male) students from the pool had, for example,

better teaching or other resources and this could have led to higher exam performance. However,
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Figure 9 in Appendix G shows that this concern is not empirically relevant: if anything, college

‘quality’ is inversely correlated with the propensity to take male applicants from the pool, and

hence cannot explain the positive coefficients we obtain. For these reasons, we use the specification

with subject fixed effects and application college fixed effects but without offer college fixed effects

as our preferred one.

The students’ first-year performance, whilst important, may not be the best measure of their

overall performance at university. Therefore, we re-estimate our regressions using the student

performance in their exams in the remaining two years of their university degree (Table 6, Panel

B). Focussing on MI subjects only, first, we see that the statistically significant performance gap

persists in the second and third years. Hence, using this longer run measure of performance, we

continue to find existence of a diversity-performance trade-off. In magnitude, the gap shrinks,

from 0.24 standard deviations in the first year to 0.15 standard deviations in the third year, which

means that the implied lower bound of the diversity-performance trade-off is smaller when we look

at performance in later years.23

Since our sample excludes students for whom exam data are missing and students who changed

their course, we may ask whether our results are biased because of systematic attrition. In Appendix

B, we show first that attriting pooled males and directly admitted females tend to be similar.

Second, if we broaden our first year sample to include students that will drop out in future years, our

findings remain unchanged. This gives us confidence that our results are not driven by systematic

attrition.24

Finally, the performance of the pooled admits may not be the same as it would have been, had

they attended the application college. But in order for this to affect our results, it has to be the

case that male pooled candidates systematically end up in colleges that are better fit for them than

the application college, while females do not. This seems unrealistic.

To summarize, our regression analysis controlling for a number of factors has confirmed our

preliminary gender results reported in Table 6. There is no difference in lower bound of admission

cutoffs for different genders in Law, Medicine and Biological Sciences, confirming that, using our

conservative approach, we do not have sufficient evidence to identify diversity-performance trade-

off in these disciplines. However, in mathematically intensive subjects (Mathematics, Engineering,

Physical Sciences, and Economics), there is a significant difference in cutoffs, even using the lower

bound estimates, thus implying that there is a gender equality-performance trade-off in these sub-

jects. The lower bound of that trade-off signifies that at least 0.15-0.24 of a standard deviation in

performance is given up at the margin to maintain the current proportion of female students at

24% in these disciplines.

23We also performed the same exercise for non-MI subjects and found that the estimates remain statistically

insignificant in later years.
24We thank one of the anonymous referee for this suggestion.
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Table 6: The gap between pooled males and directly admitted females

Panel A. First year

All subjects Non-MI MI

(1) (2) (3) (4) (5) (6)

Pooled male 0.11 0.17 0.03 0.27 0.24 0.15

(0.05) (0.06) (0.07) (0.06) (0.06) (0.08)

Observations 2235 2235 1129 1106 1106 1106

Subject FE ✓ ✓ ✓ ✓ ✓

Application college FE ✓ ✓ ✓

Offer college FE ✓

Panel B. Later years: Mathematically intesive subjects

Second year Third year

(1) (2)

Pooled male 0.16 0.15

(0.06) (0.06)

Observations 1106 1106

Subject FE ✓ ✓

Application college FE ✓ ✓

MI: Mathematically intensive subjects, viz. Economics, Engineering, Mathematics and Physi-

cal Sciences. Non-MI subjects: non-mathematically intensive subjects, viz. Biological Sciences,

Medicine and Law. Sample: Pooled males and directly admitted females. Subjects are in column

headers in Panel A, and MI in Panel B. Dependent variable: standardized exam score, 1st year

(Panel A), 2nd and 3rd year (Panel B), as shown by column headers. Pooled male: a dummy =

1 if pooled male, = 0 if directly admitted female. Estimation: OLS. Standard errors clustered

at application college level (columns 1 and 2, Panel A) and robust standard errors (columns 3-6,

Panel A and all columns, Panel B) are in parentheses.
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5.5 Robustness

We perform a few further robustness checks on our gender-gap results, which are reported in Table

7.

• Women-only colleges: Cambridge has three colleges that admit only women; these colleges

were established later than most others, and tend to have lower financial resources. To check

that our gender results are not driven by these, in addition to including application college

fixed effects, we drop the women-only colleges from the sample (Table 7, column (2)).

• Other background controls: Another possible concern is false attribution, e.g. the gender

gap stems from school-type if pooled females come mainly from state-funded schools whereas

pooled males come mainly from privately-funded schools. To check this, we include dummies

for school-type (UK state-funded, other UK, and non-UK) and the student’s place of residence

(EU, the UK, and other) as additional controls (Table 7, column (3)).25

• Year effects: We include fixed effects for year of application to ensure that the scores are

comparable across years (Table 7, column (4)).

Table 7 shows that in MI subjects the gender gap is robust to all three issues discussed above.

Lastly, we consider an alternative way to identify the marginal candidates by focussing on a

small number of pooled students who were eventually admitted by the same college that had placed

them into the pool.26 These students could be considered to be the marginal admits, since they

had applied to and were not admitted by the pooling college in the first round, but were eventually

admitted by them. Column (5) of Table 7 shows that, conditional on subject and application

college fixed effects, marginal males score 0.23 standard deviations higher in first-year exams than

marginal females. This result lends further support to our finding that the admission cutoff for

females is lower than that for males. The number of such students is small (242), and so when

we break this up by mathematical intensity of the subjects, the results are no longer statistically

significant. Nevertheless, the point estimate is large and positive in both groups, and is about 1/3

higher in the MI subjects, consistent with our main results (columns (6) and (7)).

5.6 Understanding the gender gap

To help us further understand and interpret our main results in this section, we present additional

findings on factors potentially related to the gender gap in mathematically intensive subjects. These

25The student’s place of residence does not always coincide with the school location.
264/5 of applicants taken from the pool are taken by a different college from the one they had applied to, in line

with the main rationale of the pool. The rest of the time, they are taken by the college they had applied to. This

happens when a college puts a candidate in the pool but then takes them back, for example, if they could not find

someone else they would rather take from the pool.
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Table 7: Gender: robustness checks, year 1 performance

All subjects MI non-MI

Main Mixed Controls Year FE Marginal Marginal Marginal

(1) (2) (3) (4) (5) (6) (7)

Pooled male 0.24 0.24 0.24 0.25

(0.06) (0.06) (0.06) (0.06)

Marginal male 0.23 0.34 0.24

(0.13) (0.21) (0.20)

Observations 1106 1052 1106 1106 242 122 120

Subject FE ✓ ✓ ✓ ✓ ✓ ✓ ✓

Application college FE ✓ ✓ ✓ ✓ ✓ ✓ ✓

Application year FE ✓

Note. MI: Mathematically intensive subjects, viz. Economics, Engineering, Mathematics and Physical Sciences.

Non-MI subjects: non-mathematically intensive subjects, viz. Biological Sciences, Medicine and Law. Sample: in

columns except (1)-(4), the sample is pooled males and directly admitted females in MI subjects. In column (5), the

sample consists of ‘marginal’ students in all subjects defined as students taken back from the pool by the college they

applied to, further split by MI and non-MI subjects in columns (6) and (7). Dependent variable: the standardized

score obtained in first-year exams. Pooled male: a dummy = 1 if pooled male, = 0 if directly admitted female.

Marginal male: a dummy = 1 if marginal male, = 0 if marginal female. Main: main specification (table 6, panel A,

column (5)). Mixed: only mixed gender colleges. Controls: additional controls for school-type and residence. Year

FE: with fixed effects for year of application to Cambridge. Estimation: OLS. Robust standard errors are reported

in parentheses.

factors can be grouped into two categories: those that are present at university and those in place

prior to university admission.

5.6.1 At university

Peer Effects: In our sample, there are only 24% females in the mathematically intensive subjects,

where we find the gender gap in performance. This is in contrast to the subjects where we do not

identify a gender gap – in them, females are in a majority. Hence, it is possible that our results is

due to peer effects: females are affected negatively by environments with fewer female classmates.

This would challenge our interpretation of the main result as the difference in admission cutoffs.

To address this we construct a test, exploiting the fact that a lot of teaching in Cambridge is in

small peer groups, organized by college, and there is variation in gender composition across these.

In column (1) of Table 8 we look at whether the gap in first-year performance is lower in subject-

year-college combinations with a higher share of females. We do not find any evidence of such peer
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effects.

Compulsory and optional courses. Within each degree we analyze, there are some compulsory

and some optional courses. We ask whether the gender gap is different in these two categories. Due

to data limitations and complexity of some degrees, we focus on final year Economics exams, where

there is a clear split into optional and compulsory papers. In column 2 of Table 8 we see that while

pooled males still outperform directly admitted females in the compulsory courses (0.18 standard

deviation, significant at 10% level), there are no performance differences in optional courses. This

is consistent with the idea that once they are allowed to choose, females sort into the courses where

they perform better. Since in most degrees there is a lot more choice in later compared to earlier

years, this may partly explain our finding that the gap between pooled males and directly admitted

females shrinks over time (in Table 6). This also suggests that the observed gender gap cannot be

explained by some factor endemic to the university environment that disadvantages females across

the board in their studies.
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Table 8: University factors: Gender gap in mathematically intensive subjects

Peer effects Compulsory v optional courses

(1) (2)

Pooled male 0.26 0.04

(0.12) (0.11)

Share female 0.05

(0.27)

Pooled male × Share female -0.04

(0.37)

Compulsory -0.02

(0.07)

Pooled male × Compulsory 0.18

(0.10)

Observations 1106 1028

Subject FE ✓

Application college FE ✓ ✓

Note. Sample: Column 1: pooled males and directly admitted females in MI subjects.

Column 2: pooled males and directly admitted females in Economics. Dependent variable:

Column 1: the overall standardized score obtained in first-year exams in mathematically

intensive subjects. Unit of observation: student. Column 2: the standardize score obtained

in third-year exams for each course taken within the Economics degree. Unit of observation:

student-course pair. Pooled male: a dummy = 1 if pooled male, = 0 if directly admitted

female. Share female: for each student, we calculate the share of females in his/her subject-

year-college combination (including that student). Compulsory : a dummy = 1 if the course is

compulsory, 0 otherwise. Estimation: OLS. Standard errors: Robust in column (1); clustered

at student level in column (2).
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5.6.2 High school qualifications

We now ask whether the gender gap can be attributed to differences in high school qualifications

observed at admissions. This is interesting in its own right, and also allows us to test implications

of biased beliefs discussed in Section 3.4.

For comparability, we restrict our analysis to the students who have been through British-system

schooling (80% of our sample). We focus on three high school qualification measures (explained

below): summary grade obtained in general exams, grade in advanced mathematics exams, and

number of advanced mathematics modules taken.

Typically, in British system, pupils apply to Cambridge when they are 17 years old, with

the results from the two rounds of national school exams: General exams across a large number

of subjects taken at 16 and advanced exams taken in specialist subjects at 17. More detailed

information is in Appendix H.

Cambridge does not have cutoffs for these exam grades; instead applications are judged on a

case-by-case basis. Both sets of exams are taken into account, but advanced exams are seen as

more relevant because they are more recent, advanced, and specialist.

For general exams, we use the performance measure commonly used by top UK universities,

including Cambridge, which is the number of subjects in which the applicant received the highest

available grade (A*). This is what we use to measure general exam performance (‘general exams’

thereafter).

For advanced exams, admission decisionmakers focus on grades in individual subjects, particu-

larly those most relevant to the applicant’s future degree. Since mathematics is the one subject that

is key to all mathematically intensive degrees in our study, we use the result of advanced maths

exams (‘math score’) as our variable of interest. Our final variable is the number of advanced math

modules, which reflects the fact that pupils can choose how many modules they study.27

Comparing high school qualifications by gender, males have lower scores than females in general

exams, but higher math scores, and they also take more math modules, with the gender gaps in

maths preparation larger for applicants to mathematically intensive subjects (Table 17 in Appendix

H). These differences persists when we compare directly admitted females and pooled males.

We now ask whether the observed differences in high school qualifications are related to sub-

sequent performance in Cambridge and whether they explain the gender gap in mathematically

intensive subjects. To this end, we re-estimate our main regression (which compares the perfor-

mance of pooled males and directly admitted females in mathematically intensive subjects), now

controlling for high school qualifications and their interactions with gender, and report these results

in Table 9. Since the estimates are conditional on admission, caution is required when interpreting

them.

27Those taking more modules cover more material and cope with higher workload.
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First, we verify that our main gender gap result holds qualitatively for the subset of students

from the British school system (column (1)). In column (2), we add high school qualifications

as regressors. Both general exams and maths scores (but not math modules) are positively and

significantly correlated with performance, but the estimated performance gap between pooled males

and directly admitted females does not change. Finally, in column (3) when we interact regressors

with the type of student, some of the interactions are significant, but the gender performance

gap, if anything, widens. We also use results in Table 9 to construct counterfactual predictions

of Cambridge performance for all applicants to mathematically intensive subjects. Using these

predictions and actual shares of admitted students, we show that the implied performance cutoff is

lower for directly admitted females than for pooled males (Appendix I.4, Figure 10), echoing our

main results found using actual performance.

To sum up, the results in Tables 9 show that, (i) both general exam results and math scores

attained in school are correlated with performance in Cambridge; (ii) the relationship between high

school qualifications and university performance differs by gender28, and (iii) the performance gap

between infra-marginal males and supra-marginal females does not appear to be explained by these

differences. This is further confirmed by Oxaca decomposition of performance of pooled males and

directly admitted females which we report in Appendix I.2. As we discuss in Section 3.4.2, one of

the implications of this is that the gap we find between admission cutoffs for the two genders is

unlikely to be driven by the university ignoring gender differences at admission.

Weights on qualifications

The coefficients in Table 9 (as well as in Table 18) suggest that advanced math scores are

more strongly correlated with performance in mathematically intensive subjects than general exam

scores. In Appendix I.3, we propose a rough way of testing whether the admission decisionmakers

give appropriate weight to math scores when selecting candidates, and find some support for the idea

that they tend to under-weight them relative to general exams. Taken together with the observation

that females tend to perform better than males in general exams but worse in advanced math (Table

17), this lends some support to the notion that such under-weighting of math scores at admissions

may contribute to the observed gender gaps in admission cutoffs (see also Section 3.4.3).

28Similar results are obtained if, instead of looking at infra-marginal males and supra-marginal females, we regress

the performance of all directly admitted first-year students in MI subjects on gender dummy and pre-admission

characteristics; see Table 18 in I.
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Table 9: Qualifications: Gender gap in mathematically intensive subjects

(1) (2) (3)

Pooled male 0.15 0.19 0.45

(0.07) (0.07) (0.22)

Number of A* in General exams 0.09 0.14

(0.04) (0.05)

Maths score 0.33 0.42

(0.04) (0.05)

Maths modules 0.02 0.03

(0.02) (0.02)

Pooled male × Number of A* in General exams -0.10

(0.07)

Pooled male × Maths score -0.23

(0.09)

Pooled male × Maths modules -0.04

(0.03)

Observations 764 761 761

Subject FE ✓ ✓ ✓

Application college FE ✓ ✓ ✓

Note. Sample: Directly admitted females and pooled males enrolled in mathe-

matically intensive subjects (Economics, Engineering, Mathematics and Physical

Sciences) from British-system schools for whom both advanced school exam (AS)

and general exam (GCSE) information is available. Dependent variable: the stan-

dardized score obtained in first-year Cambridge exams. Pooled male: a dummy

variable that equals one for pooled males and zero for directly admitted females.

High school qualifications: Number of A* in general exams – number of top marks

(A*) achieved in general exams. Math score – percent math score obtained across

all advanced (AS) math modules available at the time of application. Estimation:

OLS. Robust standard errors are reported in parentheses.
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6 Results: Socioeconomic background

Recall that, following the UK government definitions, we use state-funded school attendance as a

proxy for lower socioeconomic background (see Section 2). First, we look at performance-diversity

trade off by comparing mean exam performance as discussed in Section 3.2.2, where h is the

protected characteristic, i.e. applicants from state-funded school.

Table 10, which for ease of interpretation has the same format as table 5, shows that we find no

evidence of trade-off between socioeconomic diversity and performance. In both MI and non-MI

subjects, although the upper bound of cutoff differences is positive and significant (column (6)),

the lower bound is not significantly different from zero (column (3)). A zero lower bound does not

rule out a positive parameter value, i.e. we may fail to detect an existing trade-off in this case,

which is the cost of failure of point-identification. Note, however, that the share of students from

state funded schools is 64%, which is the government target for Cambridge. Hence, we can say

that the university has been able to achieve this target without any conclusive evidence that this

involved a performance sacrifice, using our conservative measure.

Table 10: Identifying and measuring the trade-off: School-type

Pooled DA Lower DA Pooled Upper

private (g) state (h) bound of β private (g) state (h) bound of β

(1) (2) (3) (4) (5) (6)

non-MI subjects

Mean -0.10 -0.02 -0.08 0.11 -0.20 0.32

SE 0.06 0.03 0.07 0.03 0.05 0.07

MI subjects

Mean -0.07 -0.07 -0.01 0.12 -0.31 0.44

SE 0.05 0.03 0.06 0.03 0.05 0.07

Note. Pooled private (g)/state (h): average standardized performance in year 1 exams of students admitted from

the pool from group g(privately-funded schools)/h(state-funded schools). DA private (g)/state(h): average stan-

dardized performance in year 1 exams of students directly admitted from the pool from group g(privately-funded

schools)/h(state-funded schools). Lower bound of β: lower bound of the weight on diversity in the university objective

function = Pooled g - DA h. Upper bound of β: upper bound of the weight on diversity in the university objective

function = DA g - Pooled h. SE : standard error.

This conclusion is confirmed graphically in Figure 4: the CDF of first-year standardized exam

scores for directly admitted distribution first order stochastically dominates the distribution of the

pooled, within and across school-types. So, unlike in the case of gender in mathematically intensive

subjects, the distribution of scores for directly admitted student with the protected characteristic
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is not FOSD by the pooled students who do not have the protected characteristic.

Robustness of this result is confirmed by regressions in Table 11, which control for subject and

application college fixed effects. The results show that the mean differences are negative in all

specifications across all years of exams, confirming our estimates in Table 5. Recall that negative

differences do not provide evidence of a trade-off (sections 3.2 and 3.2.2). We also split the subjects

into two groups by mathematical intensity, in the same way we have done for gender, and find no

qualitative differences across them.

The fact that there is no positive difference in performance between super-marginal candidates

from state-funded schools and marginal candidates from privately-funded schools implies that min

g1 − h1, the lower bound of the diversity-performance trade-off, is not significantly different from

zero. Hence, based on this conservative measure, there is no conclusive evidence of a trade-off

between performance and socioeconomic status as captured by the school-type.

Figure 4: First-year exam scores by pool status and school-type

0
.2

.4
.6

.8
1

-3 -2 -1 0 1 2 3
Standardized percentage score

Direct privately-funded Direct state-funded
Pooled privately-funded Pooled state-funded

All subjects

Note. The graph shows the cumulative distribution function of standardized first-year exam scores for different

subgroups of students, by school-type, for all subjects combined.
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Table 11: The school-type gap

Year 1 Year 2 Year 3

All subjects Non-MI MI All subjects

(1) (2) (3) (4) (5) (6)

Pooled privately-funded -0.167 -0.207 -0.268 -0.127 -0.253 -0.136

(0.053) (0.053) (0.068) (0.081) (0.058) (0.053)

Observations 2459 2459 1431 1028 2459 2459

Subject FE ✓ ✓ ✓ ✓ ✓

Application college FE ✓ ✓ ✓ ✓ ✓

Note. Sample: directly admitted students from state-funded schools and pooled students from

privately-funded schools (UK only). Dependent variable: indicated in the column header, where

Year 1, 2, and 3 stand for standardized scores obtained in first-, second-, and third-year exams,

respectively. MI: Mathematically intensive subjects, viz. Economics, Engineering, Mathematics and

Physical Sciences. Non-MI subjects: non-mathematically intensive subjects, viz. Biological Sciences,

Medicine and Law. Pooled privately-funded: a dummy = 1 for pooled candidates from privately-

funded schools and 0 for directly admitted candidates from state-funded schools. Estimation: OLS.

Standard errors clustered at the college of application level (columns (1) – (2)) and robust standard

errors (columns (3) – (6)) are reported in parentheses.

7 Conclusion

Admission practices at elite universities face the dual objectives of maintaining high academic

standards while admitting sufficiently many students from under-represented demographic groups.

To make informed policy decisions it is important to understand whether there exist trade-offs

between these objectives, and if so, what is their realized magnitude.

In this paper, we investigate this trade-off through a simple, intuitive model of admissions

capturing the balance between diversity and post-entry student outcomes. We show that at the

optimum in this model, the decisionmaker’s implicit preference for specific demographics vis-a-vis

expected future student outcome equals the difference in outcome between marginal admits across

groups. This result is nonparametric in that it does not require assuming any specific functional

form for distribution of unobservables, e.g. that potential outcomes are normally distributed or

have right tails of a specific shape.

A challenge in implementing the above idea empirically is that it is usually not possible to

determine who the marginal entrants are, when admission decisions are based on many indicators,

some of which are unobserved by researchers, leading to well-known ‘infra-marginality’ problems.

We develop a novel method to address this issue by exploiting the fact that many students enter elite
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universities, including Cambridge from where our data come, through a waitlist or second round

clearing. We show that using inter-group outcome difference between students admitted directly

versus through clearing, we can construct lower and upper bounds on the unobserved difference

in the implicit admission cutoffs, i.e. the outcome of the marginal entrants. These bounds (a)

do not require information on rejected candidates and (b) remain valid even if some applicant

characteristics viewed by decisionmakers are unobserved by the researcher. This in turn enables us

to back out the implied relative weight on demographics vis-a-vis future outcomes in the admission

decisions. Given that a large majority of institutions in the world use waitlists and/or clearing to

fill all their positions, this approach is likely to have wider applicability beyond the specific context

studied here.

Finally, we apply our method to data from the University of Cambridge. We concentrate on

two key applicant characteristics that decisionmakers typically focus on: gender and socioeconomic

background as proxied by the type of school attended by the applicant. We use academic perfor-

mance in Cambridge exams as the outcome of interest.

We find strong evidence that in mathematically intensive subjects where female enrolment

is relatively low, there exists a significant trade-off between gender equality and performance.

Waitlisted men outperform directly admitted females in exams by 0.25 standard deviations, which

forms the lower bound of the future exam performance that the university gives up to prevent the

gender ratio from deteriorating further in these subjects. For a standard normal benchmark, this

suggests that between 10− 15% of admitted girls got in due to a lower cutoff. Further, this implies

that the university places the relative weight of at least 20% on gender diversity in these subjects

and of at most 80% on academic performance. Our measured performance gap is resilient to a

large variety of robustness checks, persists throughout the length of the degree, especially in the

compulsory core papers, and indicates a genuine underlying regularity.

On the other hand, we detect no gender-performance trade-off in non-mathematical but equally

competitive subjects of Law, Medicine and Biological Sciences, where the gender ratio among

admits is close to 50-50.

We also investigate the same trade-off for the case of socioeconomic background, as captured

by the key variable on which the UK government has long based its admission guidelines, viz. the

type of school attended by the candidate. We do not find strong evidence of trade-off between

diversity and performance in this case. One important insight from these contrasting findings

for gender and socioeconomic background is that the presence and magnitude of the trade-off are

context-dependent.

Our results deliver a two-fold policy implication. First, to evaluate any policy intervention

at the status-quo, the policy maker must have a measure of the relevant trade-offs. This can

be challenging, and in this paper, we develop an approach for doing so. As we discuss in the

introduction, all too often such trade offs are not made explicit, potentially leading to confused and
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inconsistent decision making. Our findings also stand in some contrast to the current policy debate

in the UK, which focuses almost exclusively on the merits of increasing intake from state-schools,

with relatively little attention to gender performance gap and recruitment into STEM fields. Our

results suggest that in the latter area, the university faces much larger trade-offs, and so it should

command more, not less, policy discussion.

This brings us to the second policy issue, which is how to address the gender performance gap

in mathematically intensive subjects. This requires a good understanding of why the gap arises,

a question that we cannot answer definitively with our data. Nevertheless, our evidence points

to a gap in mathematical preparation existing already before entry into the university. Although

females outperform males in general school exams, when it comes to mathematics preparation at a

more advanced level, critical for mathematically intensive degrees at university, they lag somewhat

behind their male counterparts.

Based on the above, we conjecture that in the short-run, boosting the mathematical preparation

for female students admitted to STEM fields and Economics, say through a preparatory course,

can potentially improve their subsequent performance and reduce the existing gender gap. Early

childhood intervention encouraging bright girls to pursue mathematical tracks (cf. Heckman and

Krueger 2005, Heckman 2006, Ellis et al. 2016, Wang and Degol 2017) would be a natural longer-

term goal for increasing STEM opportunities and participation for women. Indeed, our results

are consistent with the suggestion that girls are discouraged from taking as much maths as males

in school and from applying to mathematically intensive subjects, with the academically stronger

females going instead into disciplines like Law and Medicine (see Tonin and Wahba 2014 and

Crawford et al. 2018). Indeed, it is conceivable that currently holding female applicants to a

lower entry standard at admission, albeit at the expense of excluding more capable males, is a

way to encourage better female students to apply to these subjects in the future, increasing overall

efficiency in the long-run.

On the methodological end, our contributions are two-fold. Firstly, we develop a theoretically

grounded empirical model of admissions that can be used to quantify precisely how the university

trades off future outcomes against diversity objectives, and hence the relative weights it puts on

the two. Secondly, we outline a novel method of set-identifying inter-group performance differences

between marginal admits – an ingredient of our trade-off calculation – by using candidates admit-

ted via waitlist, a common feature of college-admission around the world. These methods serve

to mitigate two common complications in empirical assessment of selection procedures, viz. the

unobservability of all applicant characteristics affecting selection decisions, and the lack of suitable

counterfactual outcomes for rejected applicants. As such, our methods can be applied to other out-

comes of interest, such as graduation rates, subsequent earnings, alumni donations etc. provided

data on such outcomes are readily available.
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Appendices

A Proofs of Claims 1 and 2

Proof of Claim 1. Given any set Xh, choose h1 as the Pr (X /∈ Xh|G = h)th quantile of

E (Y |X,G = h), i.e.

Pr {E (Y |X,G = h) ≥ h1} = Pr (X ∈ Xh|G = h) ,

implying

Nh Pr (X ∈ Xh, E (Y |X,G = h) < h1) +Nh Pr (X ∈ Xh, E (Y |X,G = h) ≥ h1, G = h)

= Nh Pr {E (Y |X,G = h) ≥ h1, X ∈ Xh|G = h}

+Nh Pr {E (Y |X,G = h) ≥ h1, X /∈ Xh|G = h} ,

i.e.

Nh Pr (X ∈ Xh, E (Y |X,G = h) < h1|G = h) = Nh Pr {E (Y |X,G = h) ≥ h1, X /∈ Xh|G = h} .
(12)

Therefore, the difference in expected outcomes between the two alternative criteria for admissions,

viz. {X ∈ Xh} and {E (Y |X,G = h) ≥ h1} is given by

NhE (Y × 1 {X ∈ Xh} |G = h) + βNh Pr (X ∈ Xh|G = h)

−NhE (Y 1 {E (Y |X,G = h) ≥ h1} |G = h)− βNh Pr (E (Y |X,G = h) ≥ h1)

= NhE ((Y + β)× 1 {X ∈ Xh} |G = h)

−NhE ((Y + β)× 1 {E (Y |X,G = h) ≥ h1} |G = h)

= NhE ((Y + β)× 1 {X ∈ Xh, E (Y |X,G = h) < h1} |G = h)

−NhE ((Y + β)× 1 {X /∈ Xh, E (Y |X,G = h) ≥ h1} |G = h)

< Nh (h1 + β)× Pr {X ∈ Xh, E (Y |X,G = h) < h1|G = h}

−Nh (h1 + β)× Pr {X /∈ Xh, E (Y |X,G = h) ≥ h1|G = h}

= Nh (h1 + β)×

[
Pr {X ∈ Xh, E (Y |X,G = h) < h1|G = h}
−Pr {X /∈ Xh, E (Y |X,G = h) ≥ h1|G = h}

]
︸ ︷︷ ︸

=0, by (12)

= 0.

This implies that the criterion {X ∈ Xh} yields a lower expected outcome than the criterion

{E (Y |X,G = h) ≥ h1}.
For group g, one can repeat the above argument after replacing h by g and setting β = 0, to

conclude that picking g1 that solves

Pr {E (Y |X,G = g) ≥ g1} = Pr (X ∈ Xg|G = g) ,
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for any other subset Xg of the support of Xg will imply that

NgE (Y × 1 {X ∈ Xg} |G = g) < NgE (Y × 1 {E (Y |Xg, G = g) ≥ g1} |G = g) .

Therefore, the optimal solutions Xg,Xh to the problem (16) must be of the form Xg = {E (Y |X,G = g) ≥ g1}
and Xh = {E (Y |X,G = h) ≥ h1}.

Proof of Claim 2. Let r = 1 − Fg (g1) and s = 1 − Fh (h1). Since Fg (·), Fh (·) are strictly

increasing and continuous, maximizing with respect to g1, h1 is equivalent to maximizing w.r.t. r, s.

Therefore, (3) is equivalent to

maxr,s∈[0,1]

[
Ng

∫∞
F−1
g (1−r) afg (a) da+Nh

∫∞
F−1
h (1−s) afh (a) da+ βNhs

]
s.t.

Ngr +Nhs = M .

Replacing r = M−Nhs
Ng

, the objective becomes[
Ng

∫ ∞

F−1
g

(
1−M−Nhs

Ng

) afg (a) da+Nh

∫ ∞

F−1
h (1−s)

afh (a) da+ βNhs

]
(13)

F.O.C. for maximum

−Nh

F−1
g

(
1− M−Nhs

Ng

)
fg

(
F−1
g

(
1− M−Nhs

Ng

))
fg

(
F−1
g

(
1− M−Nhs

Ng

)) +Nh
F−1
h (1− s) fh

(
F−1
h (1− s)

)
fh

(
F−1
h (1− s)

) + βNh = 0

i.e.

β = F−1
g

(
1− M −Nhs

Ng

)
− F−1

h (1− s) . (14)

As for the second order condition, note that

∂

∂s

{
−NhF

−1
g

(
1− M −Nhs

Ng

)
+NhF

−1
h (1− s) + βNh

}
= −

N2
h

Ng

1

fg

(
F−1
g

(
1− M−Nhs

Ng

)) − Nh

fh
(
F−1
h (1− s)

)
< 0 for all s.

So, the objective function (13) is a strictly concave function of s, and thus the first order condi-

tion (14) yields a unique maximum at an interior point. Now, note that F−1
h (1− s) = h1 and

F−1
g

(
1− M−Nhs

Ng

)
= F−1

g (1− r) = g1, the admission cutoffs for groups h and g respectively.

Therefore, (14) reduces to

β = g1 − h1. (15)

A2



B Our model as Extended Roy Model

Canay et al. 2022 set up the problem of outcome based tests of decision-making (illustrated via

judicial verdict on whether to grant bail) through Extended Roy Model.

Using their notation in our context, denote Di = 1 as the decision to admit applicant i and

Di = 0 the decision to reject, the groups g, h to be values assumed by the commonly observed

characteristic Ri, the potential outcomes Y1i equal to i’s potential academic performance upon

entering the university, and Y0i ≡ 0, reflecting that the university is assumed not to care about the

applicant’s potential performance (in another university) if he/she is not admitted. Like Canay et

al. 2022, we maintain the assumption that the university’s decision does not affect the values of

potential outcomes. In our context, this rules out for example that one group exerts additional

effort upon entry if they realize that they had faced higher or lower standards of admission. The

‘cost’ C associated with the decision of Di = 0 is 0 if Ri = g and equals −β if Ri = h. That is, the

university enjoys an additional (psychic) gain of β, measured in outcome units, when accepting an

h-type applicant.

Additionally, there is a constraint on the total number of admits, forced by the capacity con-

straint, which is not explicitly modelled in Canay et al. As a result, the university’s decision process

has to account for not just whether the net benefit from its decision is positive as in Canay et al.,

but also for whom are the net benefits the highest, leading to the group specific thresholds g1 and

h1. Subject to that modification, equation (15) above is somewhat analogous to equation (16) in

Theorem 4.2 of Canay et al. and essentially reproduces the Beckerian insight that the difference

in outcomes of marginal entrants from different groups reveals the difference in standards to which

they were held; a larger outcome for group g marginals implies that they are held to a higher

standard.
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C Sample and attrition

Our sample consists of all students who entered Cambridge in 2013-2016 and subsequently sat exams

at the end of the three year degree in seven large subjects (Economics, Engineering, Mathematics,

Biological Sciences, Law, Medicine and Physical Sciences). This is 5,888 students (see also Section

4).

Figure 5 summarizes Cambridge admission process, whilst Table 12 shows how the sample above

is arrived at. In 2013-2016, Cambridge received roughly 38 thousand applications, of whom around

9 thousand were given admission offers. Subsequently, around 7 thousand of them enrolled, with the

remaining 2 thousand either missing their conditional offer or choosing not to come to Cambridge.

Of the 7 thousand enrolled, around one thousand students did not reach the end of their degree,

resulting in the final sample of just under 6 thousand students.

This attrition between the offers made and our sample, though unavoidable in our outcome-

based analysis, may raise concerns. At the same time, in order for attrition to be a threat to our

results, the probability of attrition has to be correlated with performance and group membership in

very particular ways. In the subsequent Sections, we discuss the sources of attrition in our context,

and present evidence that such correlations are unlikely. We do this in two steps: Section C.1

discusses pre-enrolment attrition (from 9 to 7 thousand, roughly), and Section C.2, post enrolment

attrition (from 7 to 6 thousand, roughly).

Table 12: Sample

N %

Applied to Cambridge 38,199

Recieved offers 9,028 24

Enrolled 7,089 79

Exams in Year 1 6,732 95

Exams in Year 3 (final sample) 5,888 87

Note. Exams in Year 1/Year 3 are the number of students

who sat exams in the subject they enrolled in.

% column shows the N entry in this row as a percent of

the N entry in the previous row (e.g. 87% in the last row

means that 87% of all those who sat exams in the subject

of their initial enrolment at the end of year 1 also did so at

the end of year 3).
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C.1 Pre-enrolment attrition

Table 12 shows that just over 20% of applicants who receive an offer from Cambridge do not end

up enrolling. This can happen for two reasons, an offer holder missing their conditional offer29

or an offer holder choosing not to come. Although unfortunately the university does not collect

systematic data on this, because of high admission requirements and elite status of the university,

the former is a considerably greater concern to the university’s admission officers than the latter.

In particular, when it comes to domestic applicants (who account for over 2/3 of the student intake,

and pay relatively low domestic fees), the operational assumption in Cambridge is that probability

of them turning down a Cambridge offer is negligible. 30

Potentially, pre-enrolment attrition could impact our analysis in two ways: first, through our

model of the diversity-performance trade-off in Section 3.1 and second, through empirical identi-

fication of admission cutoffs in Section 3.2. We argue below that neither of these affect the main

results of the paper.

To address the first concern, we can introduce arrival probabilities below 100% into our deci-

sionmakers model. It can be shown that, even if they differ across the groups of interest, our main

result, summarized in equation (15) is not affected (see below). Intuitively, arrival rates smaller

than 100% will force the decisionmaker to take more students than the M places available. In do-

ing so, the decisionmaker will have to lower the marginal expected performance of those admitted,

i.e. lower g1 and h1. Nevertheless, on the margin the decisionmaker will continue to equate the

marginal benefit from admitting from h group (h1 + β) to that of admitting from g group (g1);

if this condition does not hold, the decisionmaker could change the composition of admitted to

increase his objective. To see this formally, let the probability of acceptance be P for a randomly

chosen applicant (a special case is where the probabilities are identical across all type g and type

h applicants, respectively, i.e. P = pg with probability 1 if G = g, and P = ph with probability 1

if G = h), then the optimization problem becomes:

max
Xg ,Xh

[
NgE (PY × 1 {X ∈ Xg} |G = g) +NhE (PY × 1 {X ∈ Xh} |G = h)

+βNhE {P × 1 (X ∈ Xh) |G = h}

]
, (16)

subject to

NgE {P × 1{X ∈ Xg}|G = g}+NhE {P × 1 {X ∈ Xh} |G = h} = M. (17)

29As we discuss in Section 2.3, Cambridge offers are made early – in January for the coming October. As a result,

they are almost always conditional on obtaining a certain mark in school leaving exams (usually sat in the summer),

and, in the special case of Mathematics, on an entrance exam.
30The one UK university that is a clear rival to Cambridge is Oxford. However, the rules governing UK applications

do not allow students to apply to both Cambridge and Oxford in the same year.

A6



The condition β = g1 −h1 will continue to hold in the transformed problem defined by (16) and

(17), but g1 and h1 will be thresholds for E [PY |X,G = g] and E [PY |X,G = h], not E [Y |X,G = g]

and E [Y |X,G = h]. The lower bound on β will then be E [PY |Waitlist admitted g]−E [PY |Directly admitted h].

The first expectation can be consistently estimated by the average performance of all g-type

applicants offered admission from the waitlist, where the performance of those who did not accept

is counted as 0. Analogously for the second term.

For the second concern, first note that pre-enrolment attrition that is due to offer holders

not meeting their offer, which is the bigger concern in Cambridge, is not a threat to empirically

identifying the difference in cutoffs for direct admission. This is because the offer holders who

do not meet the conditions of their offer are rejected by the university.31 Since the university is

not admitting these students, their removal from our sample is fully justified for the estimation of

admission cutoffs.

Finally, consider attrition of the smaller group of (predominantly international) students who

choose not to enrol. This presents a threat to identification only if there are very particular

correlations between such attrition, subsequent performance and group membership. Specifically,

for such attrition to explain our main result – that the admission cutoff is lower for females in

MI subjects – directly admitted female offer holders who choose not to enrol must be (a) stronger

than pooled male offer holders choosing not to enrol and (b) this effect has to be large enough

to change the sign of the difference in mean performance between directly admitted females and

pooled males. Although it might be possible to construct scenarios when this would be the case,

there are no obvious intuitive reasons to expect such patterns. Also, when we re-estimate our main

regressions on the subsample of domestic students, for whom this type of attrition is very rare, our

results are quantitatively smaller, but qualitatively the same. This gives us further confidence that

they are not driven by such attrition.

31Although we do not model this explicitly, not meeting offer conditions can be thought of as the university updating

the expectations of students’ ability, A, such that E(A|conditions not met) < g2 (or h2 depending on the group), as

defined in Section 3.2
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Table 13: The gender gap in MI subjects, year 1 performance

Full sample Domestic students only

(1) (2)

Pooled male 0.24 0.14

(0.06) (0.07)

Observations 1106 730

Subject FE ✓ ✓

Application college FE ✓ ✓

Note. Each column reports the results from a different OLS regression. Pooled

male: a dummy variable that equals one for pooled males and zero for directly

admitted females. Sample: Column (1) All pooled males and directly admit-

ted females enrolled in mathematically intensive subjects (same estimation

as in Table 7, column (7)); Column (2) Domestic pooled males and directly

admitted females enrolled in mathematically intensive subjects. Dependent

variable: the standardized score obtained in exams, in first-year. Estimation:

OLS. Robust standard errors are in parentheses.

C.2 Post-enrolment attrition

In the paper, to keep our sample stable, we restrict it only to the students for whom we have all

three years of examination data in the subject they enrol in. Thus, over time we ‘lose’ students

who drop out, change subject, or both (although recall that, unlike for example in the US, in

the UK students decide on their University subject at application, and it is difficult to change it

later, so this is a fairly rare phenomenon (see Section 2.3). As we see in Table 12, we start with

7,089 students who accept Cambridge’s offer, and we subsequently lose 1,201 of them. Most of this

attrition occurs in years 2 and 3, when we ‘lose’ 844.

It is, therefore, a legitimate question whether our findings are driven by systematic attrition

post-enrolment. For example, if attriting directly admitted female students are stronger than attrit-

ing pooled male students and this difference is big enough, the differences in university performance

between these two groups could be due to asymmetric attrition rather than genuine differences in

admission cutoffs.

However, it does not appear to be the case. First, the data in Table 14 show that, given the

data we observe, there are no significant differences in attrition between pooled males and directly

admitted females: they are equally likely to attrit, the attrition is equally likely to involve subject

change, and, finally, for the students attriting in years 2 and 3, year 1 Cambridge exam performance

across the two groups is the same.

Second, we reestimate our main regressions on the sample of all first-year students who entered
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Table 14: Post-enrolment attrition

All students Attrited students Attrited in years 2 or 3

N % attrit N % subject change N Year 1 performance

(1) (2) (3) (4) (5) (6)

All subjects

Directly admitted female 1913 18 349 86 273 -43.7

Pooled male 812 17 141 89 114 -36.5

MI subjects

Directly admitted female 509 18 91 95 72 -78.3

Pooled male 367 19 69 91 56 -70.4

Note. % attrit : Percent of students who accept Cambridge offer but drop out of our sample either because they have no

tractable Cambridge exam data or they change subjects. % subject change: Of the students who drop out of our sample,

percent that experienced subject change. Year 1 performance: standardized performance in year 1 exams for students

who drop out of our sample in years 2 and 3, but are present in year 1. MI subjects: Mathematically intensive subjects:

Economics, Engineering and Mathematics. Physical Sciences are not included due to data limitations (more details are in

Section 4.1).

in 2013-2016, regardless of whether they drop out in later years.32 Furthermore, to this we can

add two more years of data, the students who entered in 2017 and 2018 for whom we have their

year 1 but not year 2 or 3 performance (and hence we did not use them in the main estimations

in the paper). What this means is that we are able to include students who will subsequently drop

out of the sample in years 2 and 3 (when, in aggregate, most of attrition occurs) Table 15 reports

gender regressions (columns (1)-(3)) and school-type regressions (column (4)), and shows that our

results are unchanged compared to the main results in Tables 6 and 11 respectively. This gives us

confidence that the findings in our paper are not driven by post-enrolment attrition.

32We are grateful to an anonymous referee for making this suggestion.
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Table 15: Performance of all year 1 students

Gender, all Gender, MI Gender, non-MI School

(1) (2) (3) (4)

Pooled male 0.15 0.29 0.06

(0.03) (0.06) (0.06)

Pooled privately-funded -0.15

(0.04)

Observations 3935 1290 1257 3494

Subject FE ✓ ✓ ✓ ✓

Application college FE ✓ ✓ ✓ ✓

Note. Each column reports the results from a different OLS regression. Pooled male: a dummy =

1 of pooled male and = 0 if directly admitted female. Pooled privately-funded : a dummy = 1 for

pooled candidates from privately-funded schools and = 0 for directly admitted candidates from

state-funded schools. Dependent variable: the standardized score obtained in first-year exams.

Sample: in column (1), the sample is pooled males and directly admitted females in all subjects; in

column (2), the sample is pooled males and directly admitted females in mathematically intensive

subjects (except Physical Sciences, due to data limitations, see Section 4.1); in column (2), the

sample is pooled males and directly admitted females in non-mathematically intensive subjects

(except Biological Sciences, due to data limitations, see Section 4.1); in column (4), the sample

is pooled privately-funded UK students and directly admitted state-funded UK students, in all

subjects. Estimation: OLS. Robust standard errors are reported in parentheses.

D Offer probabilities

Here, we compare the probability of an applicant getting an offer from Cambridge across the two

genders, conditional on high school qualifications. This complements the (unconditional) average

offer probabilities in Table 2, and feeds into the discussion in Section 5.1 where we contrast the

conclusions one might draw from naively comparing offer probabilities to those we arrive at using

our method.

We estimate the OLS regression of the probability of receiving a Cambridge offer, conditional on

gender and high school qualifications.33 The results are in Table 16, separately for mathematically

intensive subjects (column (1)) and the rest (column (2)).

For mathematically intensive subjects, high school qualifications include general exams, ad-

vanced math score and math modules (described in Section 5.6.2 and Appendix H). For the rest of

the subjects we only use general exams, since advanced maths is not essential and many applicants

33We report OLS for interpretability, but probit regressions give similar results, both qualitatively and quantita-

tively.
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do not have it. Due to data limitations, Physical and Biological Sciences have to be excluded (more

details are in Section 4.1).

To summarize Table 16, women are around 5% more likely to be admitted into mathematically

intensive subjects (where they are in a minority) and 4% less likely to be admitted into other

subjects (where they are in the majority). These differences run in the same direction, and are

slightly larger in magnitude than those based on unconditional means in Table 2.

Interestingly, although the offer probabilities alone cannot provide conclusions about trade-offs,

the observation that, for both groups of subjects, they are higher for the underrepresented gender

is suggestive of the idea that the decisionmaker is interested in gender balance, a key premise of

our theoretical model.

Table 16: Offer probability, by subject group

MI subjects Non-MI subjects

(1) (2)

Male -0.05 0.04

(0.01) (0.01)

General exams 0.07 0.16

(0.01) (0.01)

Advanced maths score 0.87

(0.03)

Math modules -0.34

(0.01)

Observations 6109 4747

Note. Each column reports the results from a different OLS regres-

sion. Male: a dummy = 1 if male and = 0 if female applicant. Depen-

dent variable: probability of being given offer at Cambridge. Sample:

in column (1), applicants to mathematically intensive subjects (Eco-

nomics, Engineering and Mathematics); in column (2), applicants to

the rest of subjects (Law and Medicine). Estimation: OLS. Robust

standard errors are reported in parentheses.
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E Quantifying the size of trade-off

Here we show the derivation underlying the results in Section 5.3 where we quantify aggregate

implications of our trade-off estimates in Mathematically Intensive subjects.

We perform two back-of-the-envelope calculations. The first asks if, using the realized post-entry

performance data, we used the same cutoff for direct admissions from both groups, how much would

average performance increase relative to the case where the cutoffs differ by the magnitude of the

lower bound on g1−h1 calculated above. The second calculation asks how many more h-types (and

fewer g-types) are admitted because of the difference in cutoffs.

E.1 Performance forgone

For the first exercise, suppose we move from a situation of different thresholds g1, h1 to a common

threshold c satisfying h1 < c < g1. Since the space constraint has to be met, c must satisfy

NgFg (c) +NhFh (c) = NgFg (g1) +NhFh (h1) (18)

because total number of admits, and therefore total number of rejections, must remain unchanged.

Note that the RHS of equation (18) is simply the total number of rejects, which is directly ob-

servable. Furthermore, (18) will have a solution by the intermediate value theorem and it will be

unique because the LHS of (18) is strictly increasing in c. The solution can be obtained by

min
c

[ ∑Ng+Nh

i=1 1 {Yi ≤ c,Gi = g}+
∑Ng+Nh

j=1 1 {Yj ≤ c,Gj = h}
−{NgFg (g1) +NhFh (h1)}

]2

(19)

As long as the c solving (18) is larger than g3 (the cutoff for rejections), one can solve (18) using the

performance data of g-types entering from the pool to calculate the terms 1 {Yi ≤ c,Gi = g}. The
terms 1 {Yi ≤ c,Gi = h} are observable for h-types because they are supra-marginal, i.e. c > h1.

Once we get c, we can calculate the ex-post performance gain from moving to a common

threshold as
Ng+Nh∑
i=1

Yi × {1 {c ≤ Yi ≤ g1, Gi = g} − 1 {h1 ≤ Yi ≤ c,Gi = h}}

This gain in average performance can be calculated although g1 and h1 are not individually known.

That is because we can calculate

Ng+Nh∑
i=1

Yi × {1 {Yi ≥ c,Gi = g}+ 1 {Yi ≥ c,Gi = h}} − Total Current Performance (20)

E.2 Additional females admitted

As for the second exercise, the number of additional h-types equals Nh [Fh (c)− Fh (h1)] which

equals the reduction in g-types Ng [Fg (g1)− Fg (c)], which can be calculated exactly once c is

A12



known from (18) by

Nh [Fh (c)− Fh (h1)]

which is the difference between the total observed number of h students admitted directly and how

many of them have scored above c in their exams.
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F Performance distributions by subject

Figure 3 in Section 5.2 shows that, in mathematically intensive subjects, pooled males have stochas-

tically higher exam scores than directly admitted females throughout the distribution. This confirms

our finding that the university faces a gender equality performance trade-off in these subjects. Fig-

ure 6 below shows that the same also holds in each individual subject in the mathematically

intensive group (i.e. Economics, Engineering, Mathematics and Physical Sciences.)

In contrast, in non-mathematically intensive subjects (Figure 3, right graph), the performance

of pooled males and directly admitted females is similar, in line with our earlier finding that there

is no gender-performance trade-off for these subjects. Below, in Figure 7 we see the same pattern

in the individual subjects that comprise this group, viz. Biological Sciences, Law and Medicine.
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Figure 6: First-year exam scores by pool status and gender, MI subjects
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Note. The graph shows the cumulative distribution function of standardized first-year exam scores for different

subgroups of students in the mathematically intensive subjects, by subject.
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Figure 7: First-year exam scores by pool status and gender, non-MI subjects
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Note. The graph shows the cumulative distribution function of standardized first-year exam scores for different

subgroups of students in the non-mathematically intensive subjects, by subject.
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G College participation in the pool

In Section 5.4 we discuss the correlation between a college’s performance and their participation in

the pool. Figure 8 shows that better performing colleges are more likely to put (male) students in

the pool.34 To deal with this threat to identification, we control for application college fixed effects

in our regression.

Figure 8: College performance and contributions to the pool
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Figure 9 shows that colleges that take more males from the pool, if anything, tend to perform

worse. This correlation goes in the opposite direction of the effect that we find, and so this is not

a threat to identification. Nevertheless, we show that qualitatively our results are unchanged when

controlling for offer college fixed effects which would address this threat had it been present (Table

6).

34The patterns in Figures 8 and 9 and hence conclusions are the same if we look at all applicants put in/taken

from the pool, rather than just male applicants.
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Figure 9: College performance and withdrawals from the pool

-1
.5

-1
-.5

0
.5

Ye
ar

 1
 re

su
lts

, s
ta

nd
ar

di
ze

d

0.00 0.10 0.20 0.30 0.40 0.50
Males taken from pool, % of college intake

-.6
-.4

-.2
0

.2
Ye

ar
 3

 re
su

lts
, s

ta
nd

ar
di

ze
d

0.00 0.10 0.20 0.30 0.40 0.50
Males taken from pool, % of college intake

H High school qualifications: background and summary statistics

In this appendix, we give the details of high school qualifications obtained under the British exam

system, and explain the three measures we focus on in section 5.6.2.

Typically, pupils apply to Cambridge when they are 17 years old, and the application lists their

results from the two rounds of British system exams, first taken at 16 (general exams or GCSEs)

and second at 17 (advanced exams or AS). Cambridge admission decisionmakers look at both sets of

exams, with the advanced exams considered more relevant because they are more recent, advanced

and specialist.

General exams: General exams are known as GCSEs in the UK and IGCSE internationally. They

are nationally graded, compulsory board exams for all school pupils, whether or not they go on to

higher education. They are taken when students are, typically, 16 years old, roughly 16 months

before a student applies to Cambridge. Usually, these exams are taken in 10 different subjects and

for each, a pupil receives grades A∗, A, B,...,G, where A∗ is the highest and G is the lowest.35

The scale is quite coarse, and many students applying to Cambridge will have top marks in these

exams. For its admission decisions, Cambridge tends to focus on a crude summary statistics from

these exams, namely the number of A∗s obtained by the candidate in all the subjects. Hence, this

is also the measure we use in our analysis to capture general exam performance (and to which we

refer as the ‘general exams’ variable).

35There is also ‘U’, for ungraded.
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Advanced exams36 : In the last two years of their school career in the British system, pupils

specialize and study, typically, only three or four subjects. For those wanting to continue to

university, the choice of these subjects is informed by the admission requirements of their desired

degree. The exams in these subjects give rise to the second set of school qualifications, the advanced

exams, known as A-levels. These exams come in two parts because they are spread over two years.

The first and earlier part, known as Advanced Subsidiary (AS) levels is the one relevant to our

analysis because the constituent exams take place before the students apply to university.37

Advanced exams are typically taken in all of the A-level subjects the applicant is studying,

four-five months before they apply to Cambridge. Hence, AS levels are the most recent set of

school results available to university decisionmakers at the time of the candidates’ application

to Cambridge, and tend to carry significant weight in the admission process. In contrast with

general exams, for advanced exams admission decisionmakers focus on grades obtained in individual

subjects, particularly those that are relevant to the university course the candidate is applying for.

Since mathematics is the one subject that is key to all of the degrees in our mathematically intensive

group, we use the score attained in the advanced AS maths exam (‘math score’) as a key advanced

qualification.

Another important characteristics of the A-level system is that school pupils have some flexibility

in the number of AS modules or courses (and hence exams) they choose to enrol in for each subject

they study at A-levels. The candidates taking more modules are covering more material and coping

with a higher workload. For this reason, we also introduce another variable, which is the number

of math modules (‘math modules’) the candidate has taken. Although we cannot directly observe

this, our data contain the maximum points that a candidate can earn in maths across all modules

they take. Using the fact that a typical module has 100 points available, we create a proxy for the

number of math modules taken by each candidate.

The summary statistics for high school qualifications are in Table 17, which displays the averages

of high school qualifications by gender, admission tier and subject type. First, the table shows that,

within both admission tiers, males have lower scores than females in general exams, but higher math

scores, and they also take more math modules. Second, the gender gap in math preparation is larger

for applicants to mathematically intensive subjects. Third, the gender differences persist also when

we compare directly admitted females and pooled males.

36Advanced exam system underwent a substantial reform in 2017. The data used in this paper are pre-reform, and

so the description here refers only to the pre-reform arrangements.
37The second part, known as A2, is taken in the summer before starting university, by which time the universities

have already made most of their offers. For this reason, Cambridge offers are usually conditional on the final A-level

grades (see Section 2.3 and Appendix C.1 for more details).
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Table 17: Means of high school qualifications

MI subjects Non-MI subjects

Direct From pool Direct From pool

M F M F M F M F

(1) (2) (3) (4) (5) (6) (7) (8)

General exams -0.14 0.14 -0.24 0.11 0.06 0.20 -0.01 0.17

Advanced Math exams

Math score 0.44 0.13 0.32 0.05 -0.47 -0.62 -0.45 -0.61

Math modules 6.54 5.88 6.28 5.75 4.18 3.75 4.25 3.82

Note. Sample: Students from schools using British system exams for whom both Advanced

and General exam information is available. M is male, F is female. General exams and math

score are standardized.

***, **, and * in F columns denote that F is different from M in the same admission tier and

subject group at 1%, 5% and 10% level respectively.

***, **, and * in From Pool M columns denote that M is different from Directly Admitted F

in the same subject group at 1%, 5% and 10% level respectively. MI subjects: Mathematically

intensive subjects, viz. Economics, Engineering, Mathematics and Physical Sciences. Non-MI

subjects: Non-mathematically intensive subjects, viz. Biological Sciences, Medicine and Law.

I High school qualifications: Additional analysis

I.1 High school qualifications: Average gender gap, MI subjects

We ask whether high school qualifications are related to subsequent exam performance in Cam-

bridge, and whether the observed gender differences in these qualifications explain the gender gap

in average university performance in mathematically intensive subjects.

To do this, we focus on students directly admitted to mathematically intensive subjects, and

regress their first-year exam performance on gender dummy alone (Table 18, column (1)), then

include high school qualifications (column (2)) and finally interact high school qualifications with

gender (column (3)). The results should be interpreted with caution, as they are conditional on

being admitted to the university.

As discussed in Section 5.6.2, all three high school qualifications are significantly positively cor-

related with performance at Cambridge. Amongst them, math score has three times the coefficient

of general exams (both standardized). Whilst simply adding these qualifications does not affect the

size of the average gender gap, when we interact them with gender, some of the interaction terms

are significant and the gender gap shrinks (column (3)). This suggests that (a) males and females

have a different relationship between high school qualifications and performance at university and

(b) some of the average gender gap observed is explained by these qualifications.
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This is in contrast with our finding in Table 9 where we saw that on the margin we are in-

vestigating, i.e. pooled males vs directly admitted females, controlling for the qualifications (and

allowing for gender heterogeneity in their effects) does not reduce performance gap between the

two.

Table 18: Performance, gender and high school qualifications of directly admitted candidates,

mathematically intensive subjects

(1) (2) (3)

Male=1 0.40 0.39 0.22

(0.05) (0.05) (0.16)

General exams 0.09 0.14

(0.02) (0.05)

Math score 0.32 0.40

(0.03) (0.05)

Math modules 0.05 0.03

(0.01) (0.02)

Male=1 × General exams -0.06

(0.05)

Male=1 × Math score -0.10

(0.06)

Male=1 × Math modules 0.03

(0.02)

Observations 2048 2038 2038

Subject FE ✓ ✓ ✓

Application college FE ✓ ✓ ✓

Note. Sample: All directly admitted applicants who sat

British system school exams and for whom both general

and advanced exam information is available.

I.2 Oxaca decomposition: Marginal gender gap, MI subjects

We now ask whether differences in marginal performances, i.e. between pooled males and directly

admitted females in mathematically intensive subjects can be explained by high school qualifica-

tions. To complement our analysis in Table 9, we perform Oxaca decomposition and report the

results in Table 19.38

38We are grateful to an anonymous referee for this suggestion.
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The decomposition is based on regressing performance of (i) pooled males and (ii) directly

admitted females separately on high school qualifications.39 That is, we decompose the difference

in mean between pooled males and directly admitted females as

E (Y |G = g)− E (Y |G = h) = (γ − η)′E (X|G = g)︸ ︷︷ ︸
Productivity-effect at mean X of group g

+ η′[E (X|G = g)− E (X|G = h)]︸ ︷︷ ︸
Covariate-effect

(21)

= (γ − η)′E (X|G = h)︸ ︷︷ ︸
Productivity-effect at mean X of group h

+ γ′[E (X|G = g)− E (X|G = h)]︸ ︷︷ ︸
Covariate-effect

(22)

where for i = {g, h}, such that g is pooled males and h is directly admitted females, Yi is stan-

dardized first-year Cambridge exam performance, Xi is the vector of the high school qualifications

(general exams, math score and math modules), γ is the vector of coefficients on X obtained in

regression of Y on X for subgroup g, and η is the vector of coefficients on X obtained in regression

of Y on X for subgroup h.

The results in Table 19 confirm our earlier findings in Table 9. Although there are differences

in the relationship between covariates and performance across the two groups (the ‘productivity-

effect’), they run in the opposite direction of the observed university performance gap, and so

does the much smaller effect resulting from the difference in levels of covariates. Hence, on the

margin that we are investigating, the gap between directly admitted females and pooled males in

mathematically intensive subjects does not appear to be explained by high school qualifications.

This is despite the fact that these qualifications are correlated with performance and partly account

for the average gender gap in mathematically intensive subjects (see Appendix I).

39These equations are the same as those in Table 9, except they (i) estimate the effects of regressors separately

using two regressions rather than via interaction terms in one combined regression and (ii) exclude fixed effects.
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Table 19: Oxaca decomposition: Gender in MI subjects

Eq-n (18) Eq-n (19)

(1) (2)

Lower bound E[Xg]− E[Xh] 0.163 0.163

Difference in intercepts (g-h) 0.442 0.442

Productivity effect -0.251 -0.263

Covariate effect -0.016 -0.029

Note. Sample: pooled males and directly admitted females, en-

rolled in mathematically intensive subjects, who sat British system

school exams and for whom both general and advanced exam in-

formation is available. Column (1) reports Oxaca decomposition

based on equation (21) above and column (2) reports Oxaca de-

composition based on equation (22) above. g are pooled males,

and h are directly admitted females. Covariates (pre-admission

characteristics) are general exams, math score and math modules.

Difference in intercepts: The difference between the intercepts of

the regression equation of Yg on Xg and of that of Yh on Xh (i.e.

the gender gap unexplained by the covariates.) Note that the first

two rows of the table are the same because the intercepts and the

lower bound of differences in covariates do not differ between equa-

tions (21) and (22).

I.3 Relative weights on qualifications, MI subjects

We now look into whether when making direct admission decisions, admission officers may be under-

weighting maths relative to other qualifications.40 To do this, we ask whether the weights they

assign to the individual qualifications are different from the weights with which these qualifications

subsequently enter Cambridge performance equation. Although there is the selection problem, the

two tier admission system allows us to partly circumvent it.

Specifically, we estimate two equations: first, we regress first-year exam performance at Cam-

bridge on high school qualifications of all applicants admitted in mathematically intensive subjects.

The results of this are reported in Table 20, column (1).

Second, for the same group, we regress the probability of being admitted directly, i.e. in the first

tier, on the same high school qualifications. The results of this are reported in Table 20, column

(2).

For each regression, we compute the ratio of (i) the coefficient on math score over the coefficient

on general exams, and (ii) the coefficient on math module over the coefficient on general exams. For

40We are grateful to an anonymous referee for this suggestion.
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(i) they are 2.1 and 5.5, and for (ii) they are 0.7 and 1, respectively, i.e., for both math variables,

the weight relative to general exams is higher in the performance equation than in the admission

equation (roughly 200% and 40% higher, respectively). This suggests that admission officers are not

putting sufficient weight on maths qualifications, relative to general exams, when making admission

decisions.

Table 20: Role of high school qualifications, mathematically intensive subjects

Probability of direct admission Year 1 performance

(1) (2)

General exams 0.01 0.06

(0.01) (0.02)

Math score 0.03 0.32

(0.01) (0.02)

Math modules 0.01 0.06

(0.00) (0.01)

Observations 2504 2504

Subject FE ✓ ✓

Application college FE ✓ ✓

Note. Sample: Students enrolled in mathematically intensive subjects, who sat British

system school exams and for whom both general and advanced exam information is

available. Dependent variables: Column (1) a dummy = 1 if directly admitted, = 0

if admitted through the pool; Column (2) first-year exam performance, standardized.

Estimation: OLS.

I.4 Counterfactual performance and admission cutoffs

Using estimates in Table 9 we construct the counterfactual predictions of first-year exam perfor-

mance in Cambridge for all applicants to mathematically intensive subjects.41 Figure 10 plots the

predicted performance CDFs for all female applicants and all male applicants that ended up in the

pool. 42 Horizontal lines show fractions that were admitted from the two groups. We see the same

pattern with the predicted results as with our regressions using actual performance: the implied

performance cutoff (-0.6) is lower for directly admitted females than for pooled males (-0.2).

41We are grateful to an anonymous referee for suggesting this.
42This excludes Physical Sciences due to data limitations (more details are in Section 4.1.
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Figure 10: Distributions of predicted performance
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